Sensory experience alters neuronal circuits, which is believed to form the basis for learning and memory. On a microscopic level, structural changes of the neuronal network are prominently observable as experience-dependent addition and removal of cortical dendritic spines. By environmental enrichment, we here applied broad sensory stimulation to mice and followed the consequences to dendritic spines in the somatosensory cortex utilizing in vivo microscopy. Additionally to apical dendrites of layer V neurons, which are typically analyzed in in vivo imaging experiments, we investigated basal dendrites of layer II/III neurons and describe for the first time experience-dependent alterations on this population of dendrites. On both classes of cortical dendrites, enriched environment-induced substantial changes determined by increases in density and turnover of dendritic spines. Previously established spines were lost after enriched stimulation. A fraction of experience-induced gained spines survived for weeks, which might therefore be functionally integrated into the neuronal network. Furthermore, we observed an increased density of spines that appeared only transiently. Together, we speculate that the cognitive benefits seen in environmental-enriched animals might be a consequence of both, a higher connectivity of the neuronal network due to more established synapses and an enhanced flexibility due to more transient spines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cercor/bhs317 | DOI Listing |
It is well known that activation of NMDA receptors can trigger long-term synaptic depression (LTD) and that a morphological correlate of this functional plasticity is spine retraction and elimination. Recent studies have led to the surprising conclusion that NMDA-induced spine shrinkage proceeds independently of ion flux and requires the initiation of protein synthesis, highlighting an unappreciated contribution of mRNA translation to non-ionotropic NMDAR signaling. Here we used NMDA-induced spine shrinkage in slices of mouse hippocampus as a readout to investigate this novel modality of synaptic transmission.
View Article and Find Full Text PDFFluorescent reporters for glutamate release and postsynaptic Ca signaling are essential tools for quantifying synapse functional heterogeneity across neurons and circuits. However, leveraging these probes for neuroscience requires scalable experimental frameworks. Here, we devised a high-throughput approach to efficiently collect and analyze hundreds of optical recordings of glutaamate release activity at presynaptic boutons in cultured rat hippocampal neurons.
View Article and Find Full Text PDFSYNGAP1 is a major regulator of synaptic plasticity through its interaction with synaptic scaffold proteins and modulation of Ras and Rap GTPase signaling pathways. mutations in humans are often associated with intellectual disability, epilepsy, and autism spectrum disorder. heterozygous loss-of-function results in impaired LTP, premature maturation of dendritic spines, learning disabilities and seizures in mice.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China.
Background: Perioperative neurocognitive disorder (PND) is a prevalent form of cognitive impairment in elderly patients following anesthesia and surgery. The underlying mechanisms of PND are closely related to perineuronal nets (PNNs). PNNs, which are complexes of extracellular matrix primarily surrounding neurons in the hippocampus, play a critical role in neurocognitive function.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619; Shanxi Provincial Key Laboratory of TCM Encephalopathy; National International Joint Research Center for Molecular Traditional Chinese Medicine. Electronic address:
Ethnopharmacological Relevance: Dihuang Drink (DHD), formulated by Liu Hejian during the Yuan Dynasty, is listed as one of the first ancient classical prescriptions by the National Medical Products Administration of China. It is commonly used for the prevention and treatment of Alzheimer's disease (AD). This study further investigates the therapeutic effects and potential mechanisms of DHD in AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!