Accurate dynamical structure factors from ab initio lattice dynamics: the case of crystalline silicon.

J Comput Chem

Dipartimento di Chimica IFM and Centre of Excellence NIS (Nanostructured Interfaces and Surfaces), Università di Torino, Via P. Giuria 5, Torino I-10125, Italy.

Published: February 2013

A fully ab initio technique is discussed for the determination of dynamical X-ray structure factors (XSFs) of crystalline materials, which is based on a standard Debye-Waller (DW) harmonic lattice dynamical approach with all-electron atom-centered basis sets, periodic boundary conditions, and one-electron Hamiltonians. This technique requires an accurate description of the lattice dynamics and the electron charge distribution of the system. The main theoretical parameters involved and final accuracy of the technique are discussed with respect to the experimental determinations of the XSFs at 298 K of crystalline silicon. An overall agreement factor of 0.47% between the ab initio predicted values and the experimental determinations is found. The best theoretical determination of the anisotropic displacement parameter, of silicon is here 60.55 × 10(-4) Å(2), corresponding to a DW factor B = 0.4781 Å(2).

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.23138DOI Listing

Publication Analysis

Top Keywords

structure factors
8
lattice dynamics
8
crystalline silicon
8
technique discussed
8
experimental determinations
8
accurate dynamical
4
dynamical structure
4
factors initio
4
initio lattice
4
dynamics case
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!