Objective: To investigate the effect of temperature, dilution, and pH on the viscosity of ocular lubricants.
Design: Laboratory based investigation of viscosity.
Participants: No human subjects.
Methods: Hypromellose 0.3%, sodium hyaluronate 0.4%, carboxymethylcellulose sodium 0.5%/glycerin 0.9%, and carmellose sodium 0.5% were investigated. Ostwald capillary viscometers were utilised for viscosity measurements. The kinematic viscosity of each lubricant was tested quantitatively from 22 to 40 °C, and over a pH range of 5-8 under isothermal conditions. The kinematic viscosity of each eye drop was also tested under dilution by varying the mass fraction of each eye drop under isothermal conditions.
Main Outcome Measure: Changes in kinematic viscosity.
Results: Hypromellose 0.3% had an initial pH of 8.34, while the other lubricants had a pH close to neutral. From 22 to 35 °C, the kinematic viscosity of sodium hyaluronate 0.4 fell by 36% from 37.8 to 24.4 mm(2)/s, carboxymethylcellulose sodium 0.5%/glycerin 0.9% fell by 35% from 16.98 to 11.1 mm(2)/s, hypromellose fell by 37% from 6.89 to 3.69 mm(2)/s, and carmellose sodium 0.5% fell by 25% from 2.77 to 1.87 mm(2)/s. At 32 °C only sodium hyaluronate 0.4%, and carboxymethylcellulose sodium 0.5%/glycerin 0.9% retained sufficient kinematic viscosity to maintain precorneal residence. Kinematic viscosities of all the topical lubricants were unaffected by pH but decreased significantly with dilution.
Conclusions: This study suggests that currently used ocular lubricants have limited bioavailability due to reductions in viscosity by temperature and dilutional changes under physiological conditions. Developing lubricants with stable viscosities may maximise therapeutic efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522845 | PMC |
http://dx.doi.org/10.1038/eye.2012.211 | DOI Listing |
Sci Robot
January 2025
Research Center for Information and Communication Technologies, Department of Computer Engineering, Automation and Robotics, University of Granada, Granada, Spain.
Robots have to adjust their motor behavior to changing environments and variable task requirements to successfully operate in the real world and physically interact with humans. Thus, robotics strives to enable a broad spectrum of adjustable motor behavior, aiming to mimic the human ability to function in unstructured scenarios. In humans, motor behavior arises from the integrative action of the central nervous system and body biomechanics; motion must be understood from a neuromechanics perspective.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Marine Engineering, Gdynia Maritime University, Morska 81-87, 81-225, Gdynia, Poland.
This paper presents the effect of environmentally friendly additives on selected parameters and microbial degradation of Marine Diesel Oil (MDO). Microbiological contamination is a serious problem in MDO and other petroleum products. For this reason, it was decided to investigate the effects of environmentally friendly additives such as silver solution and colloidal nanosilver, as well as effective liquid microorganisms and ceramic tubes with different percentages of them in diesel oil (MDO) on its selected parameters and inhibition of bacterial and fungal growth.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Background: Phaeodactylum tricornutum is a versatile marine microalga renowned for its high-value metabolite production, including omega-3 fatty acids and fucoxanthin, with emerging potential for integrated biorefinery approaches that encompass biofuel and bioproduct generation. Therefore, in this study we aimed to optimize the cultivation conditions for boosting biomass, lipid, and fucoxanthin production in P. tricornutum, focusing on the impacts of different nutrient ratios (nitrogen, phosphorus, silicate), glycerol supplementation, and light regimes.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, 09-400 Płock, Poland.
This article compares the rheological and tribological properties of three ionic liquids: Tributyl(methyl)phosphonium dimethyl phosphate 97%-MFCD, 1-Butyl-3-methylimidazolium hexafluorophosphate 97%-BMIMPF6, and 1-Butyl-3-methylimidazolium tetrafluoroborate 98%-BMIMBF4. Their density and kinematic viscosity at 20 °C and 40 °C were investigated, and tribological tests were carried out at the same temperatures with ball-on-disc contact. The test materials were made of 100Cr6 steel.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Power Engineering and Transportation, University of Life Sciences in Lublin, Gleboka 28, 20-612, Lublin, Poland.
Engine oil is a valuable source of information on the technical condition of the drive unit. Under the influence of many factors, including operating conditions, time, high temperature, and various types of contamination, the oil gradually degrades, which can result in serious engine damage. The subject of the article focuses on an attempt to answer the questions of how engine failure affects the degradation of engine oil and whether we can use this knowledge to detect potential problems in public transport vehicles at an early stage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!