A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Burn injury induces gelsolin expression and cleavage in the brain of mice. | LitMetric

Gelsolin is an actin filament-severing and capping protein, affecting cellular motility, adhesiveness and apoptosis. Whether it is expressed in the brain of burned mice has not yet been characterized. Mice were subjected to a 15% total body surface area scald injury. Neuropathology was examined by hematoxylin and eosin staining. Cerebral gelsolin mRNA, distribution and cleavage were demonstrated by quantitative polymerase chain reaction (QPCR), immunohistochemistry and Western blot, respectively. Cysteinyl aspartate-specific protease (caspase)-3-positive cells and activity were also measured. Burn injury could induce pathological alterations in the brain including leukocyte infiltration, necrosis, microabscess and gliosis. Compared with sham-injured mice, gelsolin mRNA was up-regulated at 8h post-burn (pb) in a transient manner in the cortex and striatum of burned mice, while it remained at higher levels in the hippocampus up to 72 hpb. Of interest, gelsolin was further cleaved into 42 and 48 kDa (kilo Dalton) fragments as illustrated in the hippocampus at 24 hpb, and was widely expressed in the brain by activated monocyte/macrophages, astrocytes and damaged neurons. In the meantime, caspase-3-positive cells were noted in the striatum of burned mice and its activity peaked at 24 hpb. To clarify inflammation-induced gelsolin expression and cleavage in the brain, rat pheochromocytoma cells were exposed to lipopolysaccharide to show increased gelsolin expression and caspase-3-dependent cleavage. The results suggest that burn-induced cerebral gelsolin expression would be involved in the activation of both the monocytes and astroglial cells, thereby playing a crucial role in the subsequent inflammation-induced neural apoptosis following burn injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2012.10.013DOI Listing

Publication Analysis

Top Keywords

gelsolin expression
16
burn injury
12
burned mice
12
gelsolin
8
expression cleavage
8
cleavage brain
8
mice gelsolin
8
expressed brain
8
cerebral gelsolin
8
gelsolin mrna
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!