Uptake, accumulation and translocation of caffeine by Scirpus validus grown in hydroponic condition were investigated. The plants were cultivated in Hoagland's nutrient solution spiked with caffeine at concentrations of 0.5-2.0 mg L(-1). The effect of photodegradation on caffeine elimination was determined in dark controls and proved to be negligible. Removal of caffeine in mesocosms without plants showed however that biodegradation could account for about 15-19% of the caffeine lost from solutions after 3 and 7 d. Plant uptake played a significant role in caffeine elimination. Caffeine was detected in both roots and shoots of S. validus. Root concentrations of caffeine were 0.1-6.1 μg g(-1), while the concentrations for shoots were 6.4-13.7 μg g(-1). A significant (p<0.05) positive correlation between the concentration in the root and the initial concentrations in the nutrient solution was observed. The bioaccumulation factors (BAFs) of caffeine for roots ranged from 0.2 to 3.1, while BAFs for shoots ranged from 3.2 to 16.9. Translocation from roots to shoots was the major pathway of shoot accumulation. The fraction of caffeine in the roots as a percentage of the total caffeine mass in solution was limited to 0.2-4.4% throughout the whole experiment, while shoot uptake percentage ranged from 12% to 25% for caffeine at the initial concentration of 2.0 mg L(-1) to 50-62% for caffeine at the initial concentration of 0.5 mg L(-1). However, a marked decrease in the concentration of caffeine in the shoots between d-14 and d-21 suggests that caffeine may have been catabolized in the plant tissues subsequent to plant uptake and translocation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2012.09.059 | DOI Listing |
J Environ Manage
January 2022
CREA Centro di ricerca Viticoltura ed Enologia, sede di Gorizia, Gorizia, Italy.
SCG are a bio-waste generated in great amount worldwide which are attractive as soil amendment for their high content of organic matter and nutritive elements. Nevertheless, several studies have shown that soil application of untreated SCG has detrimental agronomic and environmental effects due to their high degradability and content of noxious compounds (phenols, caffeine, and tannins). However, SCG can be valorised, in the frame of circular economy, by extraction of energy and valuable products (carbohydrates, proteins, bio-oil, bio-diesel) and generation of solid by products (biochar, hydrochar, compost) that can be utilized as soil fertilizers and amendments.
View Article and Find Full Text PDFSci Total Environ
November 2020
Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, United States; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97388, Waco, TX 76798, United States; Institute of Biomedical Studies, Baylor University, One Bear Place #97266, Waco, TX 76798, United States; School of Environment, Jinan University, Guangzhou, China. Electronic address:
Pharmaceuticals and other ionizable contaminants from municipal wastewater treatment plant effluent can bioaccumulate in fish, particularly in effluent dominated and dependent systems in semi-arid and arid regions. However, invertebrate bioaccumulation of these compounds has been less studied. Using municipal wastewater effluent as source water in outdoor stream mesocosms to simulate effluent-dependent lotic systems, we examined bioaccumulation of several widely-used pharmaceuticals including acetaminophen (nonsteroidal anti-inflamatory), caffeine (stimulant), carbamazepine (anti-epileptic), diltiazem (calcium channel blocker), diphenhydramine (anti-histamine), fluoxetine (anti-depressant), norfluoxetine (anti-depressant metabolite), and sertraline (anti-depressant) in freshwater clams (Corbicula fluminea), periphyton and stoneroller minnows (Campostoma anomalum), a commonly studied grazer in stream ecology, during a replicated outdoor stream mesocosm study at the Baylor Experimental Aquatic Research facility.
View Article and Find Full Text PDFJ Hazard Mater
September 2018
Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands. Electronic address:
Removal of pharmaceutically active compounds (PhACs) in constructed wetlands (CWs) is a complex interplay of different processes. We studied fate and distribution of seven PhACs (caffeine, CAF; naproxen, NAP; metoprolol, MET; propranolol, PRO; ibuprofen, IBP; carbamazepine, CBZ; diclofenac, DFC) in mesocosm CWs and effects of irradiation via pre-photocatalysis, substrate composition (mainly sediment) through addition of litter (dead plant biomass), and plants. CWs showed high removal of CAF, NAP, MET, PRO, and IBP (79-99%).
View Article and Find Full Text PDFAppl Environ Microbiol
April 2017
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
A single liter of water contains hundreds, if not thousands, of bacterial and archaeal species, each of which typically makes up a very small fraction of the total microbial community (<0.1%), the so-called "rare biosphere." How often, and via what mechanisms, e.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
July 2016
Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, No. 06-10, Singapore, 637141, Singapore.
A 454 high-throughput pyrosequencing approach was used to characterize the structures of microbial communities in wetland mesocosms receiving caffeine-enriched wastewater at a concentration of 250 μg L(-1). The removal efficiencies of caffeine in the planted beds (93.0 %) were significantly (p < 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!