Expression of the α-tocopherol transfer protein gene is regulated by oxidative stress and common single-nucleotide polymorphisms.

Free Radic Biol Med

Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. Electronic address:

Published: December 2012

Vitamin E (α-tocopherol) is the major lipid-soluble antioxidant in most animal species. By controlling the secretion of vitamin E from the liver, the α-tocopherol transfer protein regulates whole-body distribution and levels of this vital nutrient. However, the mechanism(s) that regulates the expression of this protein is poorly understood. Here we report that transcription of the TTPA gene in immortalized human hepatocytes is induced by oxidative stress and by hypoxia, by agonists of the nuclear receptors PPARα and RXR, and by increased cAMP levels. The data show further that induction of TTPA transcription by oxidative stress is mediated by an already-present transcription factor and does not require de novo protein synthesis. Silencing of the cAMP response element-binding (CREB) transcription factor attenuated transcriptional responses of the TTPA gene to added peroxide, suggesting that CREB mediates responses of this gene to oxidative stress. Using a 1.9-kb proximal segment of the human TTPA promoter together with a site-directed mutagenesis approach, we found that single-nucleotide polymorphisms that are commonly found in healthy humans dramatically affect promoter activity. These observations suggest that oxidative stress and individual genetic makeup contribute to vitamin E homeostasis in humans. These findings may explain the variable responses to vitamin E supplementation observed in human clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612136PMC
http://dx.doi.org/10.1016/j.freeradbiomed.2012.10.528DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
α-tocopherol transfer
8
transfer protein
8
single-nucleotide polymorphisms
8
ttpa gene
8
transcription factor
8
oxidative
5
stress
5
expression α-tocopherol
4
protein
4

Similar Publications

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Sperm motility is the prime functional attribute for semen quality and fertility of the bull. However, the bull's age directly affects the semen quality, and the bull's fertility and productive life decline with age. Even though research on age has been conducted in the past, it is still unclear how old a bull should be maintained at artificial insemination centers.

View Article and Find Full Text PDF

High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.

View Article and Find Full Text PDF

Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe inflammatory condition of the respiratory system, associated with high morbidity and mortality. This study investigates the therapeutic potential of tocilizumab (TZ), an IL-6 receptor inhibitor, in mitigating lipopolysaccharide (LPS)-induced ALI by modulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. An ALI model was established using LPS induction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!