Allium fistulosum was investigated as a novel model system to examine the mechanism of freezing resistance in cold hardy plants. The 250 × 50 × 90 µm average cell size and single epidermal cell layer system allowed direct observation of endoplasmic reticulum (ER), functional group localization during acclimation, freezing and thawing on an individual cell basis in live intact tissues. Cells increased freezing resistance from an LT50 of -11°C (non-acclimated) to -25°C under 2 weeks of cold acclimation. Samples were processed using Fourier transform infrared technology (FTIR) on a synchrotron light source and a focal plane array detector. In addition, confocal fluorescent microscopy combined with a cryostage using ER selective dye of ER-Tracker allowed more detailed examination of membrane responses during freezing. Cold acclimation increased the ER volume per cell, and the freeze-induced cell deformation stopped ER streaming and ER vesiculation subsequently occurred through the breakdown in the ER network. Freeze-induced ER vesicles in cold-acclimated cells were larger and more abundant than those in non-acclimated cells. According to FTIR, the carbohydrate/ester fraction and α-helical/β-sheet secondary structure localized in the apoplast/plasma membrane region were most visibly increased during cold acclimation. Results suggest the mechanism of cold acclimation and freezing resistance in very hardy cells may be associated with both alterations in the apoplast/plasma membrane region and the ER cryodynamics. Allium fistulosum appears to be a useful system to obtain direct evidence at both intra and extracellular levels during cold acclimation and the freezing process.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1399-3054.2012.01716.xDOI Listing

Publication Analysis

Top Keywords

cold acclimation
20
freezing resistance
16
allium fistulosum
12
acclimation freezing
12
apoplast/plasma membrane
8
membrane region
8
freezing
7
cold
6
acclimation
6
cell
5

Similar Publications

The cold tolerance of the terrestrial slug, Ambigolimax valentianus.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

January 2025

Department of Zoology, University of British Columbia, Vancouver, BC, Canada.

Terrestrial molluscs living in temperate and polar environments must contend with cold winter temperatures. However, the physiological mechanisms underlying the survival of terrestrial molluscs in cold environments and the strategies employed by them are poorly understood. Here we investigated the cold tolerance of Ambigolimax valentianus, an invasive, terrestrial slug that has established populations in Japan, Canada, and Europe.

View Article and Find Full Text PDF

Identification of a distal enhancer of Ucp1 essential for thermogenesis and mitochondrial function in brown fat.

Commun Biol

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.

Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.

View Article and Find Full Text PDF
Article Synopsis
  • Pugionium cornutum demonstrates strong tolerance to drought, salt, and disease, but the ways it copes with these stresses are not well understood.
  • In this study, researchers identified the PcNAC25 transcription factor gene, which is linked to stress response and enhances drought and salt tolerance when overexpressed in Arabidopsis.
  • The findings suggest that PcNAC25 acts as a positive regulator by boosting ROS-scavenging enzyme activity and promoting root growth, paving the way for more research on its regulatory mechanisms against environmental stresses.
View Article and Find Full Text PDF

In some peanut (Arachis hypogaea L.) producing regions, growth and photosynthesis-limiting low and high temperature extremes are common. Heat acclimation potential of photosynthesis and respiration is a coping mechanism that is species-dependent and should be further explored for peanut.

View Article and Find Full Text PDF

Oxygen is toxic in the cold in .

Front Physiol

December 2024

Roth Lab, Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.

Introduction: Temperature and oxygen are two factors that profoundly affect survival limits of animals; too much or too little of either is lethal. However, humans and other animals can exhibit exceptional survival when oxygen and temperature are simultaneously low. This research investigates the role of oxygen in the cold shock death of Caenorhabditis elegans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!