The role of ethylene sulfite (ES) as an electrolyte additive for lithium ion batteries is explained by investigating the one- and two-electron reductive decomposition of ES and (ES)Li(+)(PC)(n) (n = 0-2), both in vacuum and solvent, with the aid of high-level density functional theory calculations. The open-chain radical, which is formed as a result of reduction of ES in solvent without first being coordinated with Li(+), is further stabilized by a dissolved lithium ion. The resulting more stable intermediate releases a somewhat large amount of energy, which is utilized in the formation of a subsequent radical anion. On the basis of the study on the reductive decomposition of ES, (ES)Li(+)(PC), and (ES)Li(+)(PC)(2), the major products that are responsible for the formation of a protective solid electrolyte interphase film are Li(2)SO(3), (CH(2)OSO(2)Li)(2), CH(3)CH(OSO(2)Li)CH(2)OCO(2)Li, and ROSO(2)Li.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp3081996 | DOI Listing |
Nat Mater
January 2025
Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA.
All-solid-state lithium metal batteries promise high levels of safety and energy density, but their practical realization is limited by low Li reversibility, limited cell loading and demand for high-temperature and high-pressure operation, stemming from solid-state electrolyte (SSE) low-voltage reduction and high-voltage decomposition, and from lithium dendrite growth. Here we concurrently address these challenges by reporting that a family of reductive electrophiles gain electrons and cations from metal-nucleophile materials (here a Li sulfide SSE) upon contact to undergo electrochemical reduction and form interphase layers (named solid reductive-electrophile interphase) on material surfaces. The solid reductive-electrophile interphase is electron blocking and lithiophobic, prevents SSE reduction, suppresses Li dendrites and supports high-voltage cathodes.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Massachusetts, United States. Electronic address:
There is significant interest in monitoring abiotic decomposition of chlorinated solvents at contaminated sites due to large uncertainties regarding the rates of abiotic attenuation of trichloroethylene (TCE) and perchloroethylene (PCE) under field conditions. In this study, an innovative passive sampling tool was developed to quantify acetylene, a characteristic product of abiotic reduction of TCE or PCE, in groundwater. The sampling mechanism is based on the highly specific and facile click reaction between acetylene and an azide compound to form a biologically and chemically stable triazole product.
View Article and Find Full Text PDFWaste Manag
January 2025
School of Metallurgy and Environment, Central South University, Changsha 410083 China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083 China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083 China. Electronic address:
At present, lead-containing wastes have increasingly become the raw materials together with primary lead concentrate for lead production to meet the ever-increasing lead demand market. PbSO is the dominant component in the lead-containing wastes, nevertheless, its reaction behavior during lead smelting is not sufficiently investigated. This study investigated PbSO decomposition behaviors and phase transformation mechanisms at oxidizing and reductive atmospheres and various gas flow rates.
View Article and Find Full Text PDFTalanta
December 2024
Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471003, China. Electronic address:
Manganese dioxide nanosheets (MnO NSs) have garnered significant attention in analytical sensing, while the majority of the previous reports suffer from a complex preparation process involving reducing agents, template or high-temperature. In this work, a novel MnO NSs decorated TiCT MXene nanoribbons (TiCTNR@MnO) composite was firstly assemblied via a facile one-step strategy and applied as a bi-signal generator to enable colorimetric and fluorescence (FL) dual-response sensing. During the assembly process, TiCTNR innovatively acted as both reductant and carrier to prevent the aggregation of MnO NSs.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
. Spectral CT and material decomposition methods are crucial for precise material identification and quantitative composition analysis in preclinical research and clinical diagnosis. The empirical material decomposition method is widely used for its straightforward modeling approach, independence from spectral and detector response knowledge, and operational convenience.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!