Dynamic spreading of nanofluids on solids part II: modeling.

Langmuir

Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, USA.

Published: November 2012

Recent studies on the spreading phenomena of liquid dispersions of nanoparticles (nanofluids) have revealed that the self-layering and two-dimensional structuring of nanoparticles in the three-phase contact region exert structural disjoining pressure, which drives the spreading of nanofluids by forming a continuous wedge film between the liquid (e.g., oil) and solid surface. Motivated by the practical applications of the phenomenon and experimental results reported in Part I of this two-part series, we thoroughly investigated the spreading dynamics of nanofluids against an oil drop on a solid surface. With the Laplace equation as a starting point, the spreading process is modeled by Navier-Stokes equations through the lubrication approach, which considers the structural disjoining pressure, gravity, and van der Waals force. The temporal interface profile and advancing inner contact line velocity of nanofluidic films are analyzed through varying the effective nanoparticle concentration, the outer contact angle, the effective nanoparticle size, and capillary pressure. It is found that a fast and spontaneous advance of the inner contact line movement can be obtained by increasing the nanoparticle concentration, decreasing the nanoparticle size, and/or decreasing the interfacial tension. Once the nanofluidic film is formed, the advancing inner contact line movement reaches a constant velocity, which is independent of the outer contact angle if the interfacial tension is held constant.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la302702gDOI Listing

Publication Analysis

Top Keywords

inner contact
12
spreading nanofluids
8
structural disjoining
8
disjoining pressure
8
solid surface
8
advancing inner
8
effective nanoparticle
8
nanoparticle concentration
8
outer contact
8
contact angle
8

Similar Publications

Article Synopsis
  • The "no-touch" technique allows for safe navigation of a guiding catheter during carotid artery stenting, especially in patients with complicated arterial lesions.
  • A specially designed 4-Fr Newton-shaped catheter minimizes contact with stenotic lesions while advancing to the target area.
  • In a study of eight procedures, this technique was successful in all cases, showing it can be effective for patients with tortuous anatomy and floating thrombi without causing complications.
View Article and Find Full Text PDF

High-performance triboelectric nanogenerator employing a swing-induced counter-rotating motion mechanism and a dual potential energy storage and release strategy for wave energy harvesting.

Mater Horiz

January 2025

School of Materials Science and Engineering, Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, Anhui University, Hefei, Anhui 230601, China.

The triboelectric nanogenerator (TENG) has been proved to be a very promising marine energy harvesting technology. Herein, we have developed a high-performance triboelectric nanogenerator (SD-TENG) with low friction, high durability, swing-induced counter-rotating motion mechanism (SICRMM) and dual potential energy storage and release strategy (DPESRS). The unique counter-rotating motion mechanism enabled SD-TENG to convert the external linear and swing motion energy into rotation motion energy of the inner and outer cylinders, and then converted it into a controllable power output.

View Article and Find Full Text PDF

Capsular Polysaccharide Restrains Type VI Secretion in .

Elife

January 2025

Laboratory of Molecular Microbiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.

The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS.

View Article and Find Full Text PDF

This study investigated β-glucan with diverse conformations by using molecular dynamics simulations to analyze their conformational transitions in water. Stable conformations were docked with the Dectin-1 protein to evaluate key metrics such as favorable conformations, root-mean-square deviation, hydrogen bond interactions, and their effects on macrophage activity. Results revealed that single-chain β-1,3-glucan with a degree of polymerization (DP) of 24 forms aggregates in water, while triple-chain β-1,3-glucan with a DP of 6 tends to form double helices.

View Article and Find Full Text PDF

Introduction: This study protocol specifies the primary research line and theoretical framework of the 2023 Survey of the Psychology and Behavior of the Chinese Population. It aims to establish a consistent database of Chinese residents' psychological and behavioral surveys through multi-center and large-sample cross-sectional surveys to provide robust data support for developing research in related fields. It will track the public's physical and psychological health more comprehensively and systematically.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!