Densely aligned sub-10 nm graphene nanoribbons are desirable for scale-up applications in nanoelectronics. We implemented directed self-assembly of block-copolymers in combination with nanoimprint lithography to pattern sub-10 nm half-pitch nanoribbons over large areas. These graphene nanoribbons have the highest density and uniformity to date. Multichannel field-effect transistors were made from such nanoribbons, and the transport characteristics of transistors were studied. Our work indicates that a large ribbon-to-ribbon width variation in a multichannel FET can lead to nonsynchronized switching characters of multiple graphene channels and thus a poor ON/OFF current ratio. Through process optimization, we have created 8 nm half-pitch graphene nanoribbons with the minimal ribbon-to-ribbon width variation of ∼2.4 nm (3σ value). The corresponding transistors exhibit an ON/OFF current ratio >10, which is among the highest values ever reported for transistors consisting of densely arranged graphene nanoribbons. This work provides important insights for optimizing the uniformity and transport properties of lithographically patterned graphene nanostructures. In addition, the presented fabrication route could be further developed for the scalable nanomanufacturing of graphene-based nanoelectronic devices over large areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn303127y | DOI Listing |
Chaos
January 2025
Nonlinear Dynamics and Chaos Group, Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa.
ACS Omega
January 2025
Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015, United States.
DNA nucleobases are important in DNA sequencing, disease testing linked to genes, and disease treatment. Here, we report density functional calculations investigating the adsorption of guanine (G), adenine (A), thymine (T), and cytosine (C) on armchair graphene nanoribbons (AGNR) - a gapped semiconductor. Their adsorption energies, charge transfer, work function, and electrical properties were calculated.
View Article and Find Full Text PDFDoping strategies have been recognized as effective approaches for developing cost-effective and durable catalysts with enhanced reactivity and selectivity in the electrochemical synthesis of value-added compounds directly from CO. However, the reaction mechanism and the specific roles of heteroatom doping, such as N doping, in advancing the CO reduction reaction are still controversial due to the lack of precise control of catalyst surface microenvironments. In this study, we investigated the effects of N doping on the performances for electrochemically converting CO to CO over Ni@NCNT/graphene hybrid structured catalysts (Ni@NCNT/Gr).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.
The interaction between molybdenum carbide (MoC) nanoparticles and both flat and curved graphene surfaces, serving as models for carbon nanotubes, was investigated by means of density functional theory. A variety of MoC nanoparticles with different sizes and stoichiometries have been used to explore different adsorption sites and modes across models with different curvature degrees. On flat graphene, off-stoichiometric MoC featuring more low-coordinated Mo atoms exhibits stronger interaction and increased electron transfers from the carbide to the carbon substrate.
View Article and Find Full Text PDFNanoscale
January 2025
Physics Department E20, School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany.
-Armchair graphene nanoribbons (nAGNRs) are promising components for next-generation nanoelectronics due to their controllable band gap, which depends on their width and edge structure. Using non-metal surfaces for fabricating nAGNRs gives access to reliable information on their electronic properties. We investigated the influence of light and iron adatoms on the debromination of 4,4''-dibromo--terphenyl precursors affording poly(-phenylene) (PPP as the narrowest GNR) wires through the Ullmann coupling reaction on a rutile TiO(110) surface, which we studied by scanning tunneling microscopy and X-ray photoemission spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!