AI Article Synopsis

  • The mesolimbic dopamine system processes rewarding information and has a role in punishment and its avoidance.
  • Researchers used fast-scan cyclic voltammetry to study subsecond dopamine release in rats during a footshock avoidance task, where they had to respond to warning signals to prevent a shock.
  • Results showed that dopamine release increased with warning signals linked to successful avoidance, decreased during escape responses, and also decreased in response to cues associated with inescapable shock, indicating that these dopamine fluctuations encode information about avoiding punishment and aversive outcomes.

Article Abstract

The mesolimbic dopamine system is believed to be a pathway that processes rewarding information. While previous studies have also implicated a general role for dopamine in punishment and its avoidance, the precise nature of subsecond dopamine release during these phenomena remains unknown. Here, we used fast-scan cyclic voltammetry to investigate whether subsecond dopamine release events in the nucleus accumbens encode cues predicting the avoidance of punishment during behavior maintained in a signaled footshock avoidance procedure. In this task, rats could initiate an avoidance response by pressing a lever within a warning period, preventing footshock. Alternatively, once footshocks commenced, animals could initiate an escape response by pressing the lever, terminating footshock. This design allowed us to assess subsecond dopamine release events during the presentation of a warning signal, safety periods, and two distinct behavioral responses. We found that release consistently increased upon presentation of the warning signal in a manner that reliably predicted successful punishment avoidance. We also observed subsecond dopamine release during the safety period, as occurs following the receipt of reward. Conversely, we observed a decrease in release at the warning signal during escape responses. Because of this finding, we next assessed dopamine release in a conditioned fear model. As seen during escape responses, we observed a time-locked decrease in dopamine release upon presentation of a cue conditioned to inescapable footshock. Together, these data show that subsecond fluctuations in mesolimbic dopamine release predict when rats will successfully avoid punishment and differentially encode cues related to aversive outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498047PMC
http://dx.doi.org/10.1523/JNEUROSCI.3087-12.2012DOI Listing

Publication Analysis

Top Keywords

dopamine release
32
subsecond dopamine
20
warning signal
12
release
10
dopamine
9
nucleus accumbens
8
mesolimbic dopamine
8
punishment avoidance
8
release events
8
encode cues
8

Similar Publications

Malignant biliary obstruction presents a significant therapeutic challenge and has serious consequences including cholangitis and death. Clinically, biliary stenting using self-expanding metallic- stent(SEMS) relieves this obstruction. However, stent occlusion occurs with time due to tumor/epithelial in-growth and bacterial colonization.

View Article and Find Full Text PDF

Regulation of Dopamine Release by Tonic Activity Patterns in the Striatal Brain Slice.

ACS Chem Neurosci

January 2025

Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.

Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.

View Article and Find Full Text PDF

Hormonal factors play an essential role as an underlying causative factor of oligoasthenoteratozoospermia (OAT), and these patients can benefit from hormonal medications that modulate the hypothalamic-pituitary-gonadal axis. This review aims to outline the various medications used as hormonal therapy in treating infertile men with OAT. This manuscript focuses on essential hormonal evaluation, identifying men who would benefit from treatment, selecting the appropriate medication, determining the duration of therapy, and evaluating hormonal treatment outcomes.

View Article and Find Full Text PDF

Based on the activity of dopamine (DA) neurons during behavioral states, the DA system has long been thought to be foundational in regulating sleep-wake behavior; over the past decade advances in circuit manipulation and recording techniques have strengthened this perspective. Recently, several studies have demonstrated that DA release in regions of the limbic system is important in the promotion of REM sleep. Yet how DA dynamics change within bouts of sleep, how these changes are regulated, and whether they influence future state changes remains unclear.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by motor and non-motor symptoms, with limited effective treatment options. This study proposes a novel approach utilizing intranasal delivery of carbenoxolone (CBX) via chitosan-coated solid lipid nanoparticles (CS-coated SLNs) to manage PD symptoms by enhancing CBX delivery and brain targeting. Formulated CS-coated SLNs exhibited favorable quality attributes including particle size (164 ± 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!