Digital morphometry of rat cerebellar climbing fibers reveals distinct branch and bouton types.

J Neurosci

Center for Neural Informatics, Structures, and Plasticity, and Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA.

Published: October 2012

Cerebellar climbing fibers (CFs) provide powerful excitatory input to Purkinje cells (PCs), which represent the sole output of the cerebellar cortex. Recent discoveries suggest that CFs have information-rich signaling properties important for cerebellar function, beyond eliciting the well known all-or-none PC complex spike. CF morphology has not been quantitatively analyzed at the same level of detail as its biophysical properties. Because morphology can greatly influence function, including the capacity for information processing, it is important to understand CF branching structure in detail, as well as its variability across and within arbors. We have digitally reconstructed 68 rat CFs labeled using biotinylated dextran amine injected into the inferior olive and comprehensively quantified their morphology. CF structure was considerably diverse even within the same anatomical regions. Distinctly identifiable primary, tendril, and distal branches could be operationally differentiated by the relative size of the subtrees at their initial bifurcations. Additionally, primary branches were more directed toward the cortical surface and had fewer and less pronounced synaptic boutons, suggesting they prioritize efficient and reliable signal propagation. Tendril and distal branches were spatially segregated and bouton dense, indicating specialization in signal transmission. Furthermore, CFs systematically targeted molecular layer interneuron cell bodies, especially at terminal boutons, potentially instantiating feedforward inhibition on PCs. This study offers the most detailed and comprehensive characterization of CF morphology to date. The reconstruction files and metadata are publicly distributed at NeuroMorpho.org.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492941PMC
http://dx.doi.org/10.1523/JNEUROSCI.2018-12.2012DOI Listing

Publication Analysis

Top Keywords

cerebellar climbing
8
climbing fibers
8
tendril distal
8
distal branches
8
digital morphometry
4
morphometry rat
4
cerebellar
4
rat cerebellar
4
fibers reveals
4
reveals distinct
4

Similar Publications

Background: Epidemiological and genetic studies have elucidated associations between antihypertensive medication and Alzheimer's disease (AD), with the directionality of these associations varying upon the specific class of antihypertensive agents.

Methods: Genetic instruments for the expression of antihypertensive drug target genes were identified using expression quantitative trait loci (eQTL) in blood, which are associated with systolic blood pressure (SBP). Exposure was derived from existing eQTL data in blood from the eQTLGen consortium and in the brain from the PsychENCODE and subsequently replicated in GTEx V8 and BrainMeta V2.

View Article and Find Full Text PDF

C1q/TNF-related protein 14 (CTRP14), also known as C1q-like 1 (C1QL1), is a synaptic protein predominantly expressed in the brain. It plays a critical role in the formation and maintenance of the climbing fiber-Purkinje cell synapses, ensuring that only one single winning climbing fiber from the inferior olivary neuron synapses with the proximal dendrites of Purkinje cells during the early postnatal period. Loss of CTRP14/C1QL1 results in incomplete elimination of supernumerary climbing fibers, leading to multiple persistent climbing fibers synapsing with the Purkinje cells.

View Article and Find Full Text PDF

Granule cells of the cerebellum make up to 175,000 excitatory synapses on a single Purkinje cell, encoding the wide variety of information from the mossy fibre inputs into the cerebellar cortex. The granule cell axon is made of an ascending portion and a long parallel fibre extending at right angles, an architecture suggesting that synapses formed by the two segments of the axon could encode different information. There are controversial indications that ascending axon (AA) and parallel fibre (PF) synapse properties and modalities of plasticity are different.

View Article and Find Full Text PDF

Purkinje cell (PC) dendrites are optimized to integrate the vast cerebellar input array and drive the sole cortical output. PCs are classically seen as stereotypical computational units, yet mouse PCs are morphologically diverse and those with multi-branched structure can receive non-canonical climbing fiber (CF) multi-innervation that confers independent compartment-specific signaling. While otherwise uncharacterized, human PCs are universally multi-branched.

View Article and Find Full Text PDF

Neural circuits are initially created with excessive synapse formation until around birth and undergo massive reorganization until they mature. During postnatal development, necessary synapses strengthen and remain, whereas unnecessary ones are weakened and eventually eliminated. These events, collectively called "synapse elimination" or "synapse pruning", are thought to be fundamental for creating functionally mature neural circuits in adult animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!