The complete primary structure has been determined for an inhibitor protein of protein kinase C. The bovine brain-derived inhibitor has a pI of 6 and its N-terminal alanine residue is blocked by acetylation. Fragments obtained by chemical and enzymatic cleavage of the purified inhibitor were analyzed by Edman degradation, fast atom bombardment mass spectrometry, and tandem mass spectrometry. The results establish that the protein has a calculated average molecular mass of 13,690 daltons and contains 125 amino acid residues with the following sequence: (sequence: see text) The inhibitor does not show significant homology with any other known protein. Circular dichroism of the freshly prepared apoprotein indicated a secondary structural content of 23% alpha-helix, 31% beta-sheet, and 11% beta-turn. Immobilization on nitrocellulose followed by exposure to a 65Zn2(+)-containing overlay solution showed that, like protein kinase C itself, the inhibitor is a zinc-binding protein, although the sequence does not reveal a "zinc finger" structure. Competition with 10-fold molar excess Ca2+ or Mg2+ did not reduce the zinc-binding specificity of this inhibitor.

Download full-text PDF

Source

Publication Analysis

Top Keywords

protein kinase
12
amino acid
8
protein
8
inhibitor protein
8
mass spectrometry
8
inhibitor
7
sequence
4
acid sequence
4
sequence characterization
4
characterization protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!