Adsorption behavior of human plasma fibronectin on hydrophobic and hydrophilic Ti6Al4V substrata and its influence on bacterial adhesion and detachment.

J Biomed Mater Res A

Department of Applied Physics, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Extremadura, Badajoz, Spain.

Published: May 2013

Biomaterial implant-associated infections, a common cause of medical devices' failure, are initiated by bacterial adhesion to an adsorbed protein layer on the implant material surface. In this study, the influence of protein surface orientation on bacterial adhesion has been examined using three clinically relevant bacterial strains known to express specific binding sites for human plasma fibronectin (HFN). HFN was allowed to adsorb on hydrophobic Ti6Al4V and physically modified hydrophilic Ti6Al4V substrata. Ellipsometric data reveal that the characteristics of the adsorbed protein layers primary depend on solid surface tension and the initial protein concentration in solution. In particular, HFN molecules adopt a more extended conformation on hydrophobic than hydrophilic surfaces, an effect that is more pronounced at low than at high initial protein concentrations. Moreover, the extended conformation of the protein molecules on these surfaces likely facilitates the exposure of specific sites for adhesion, resulting in the higher bacterial-cell attachment observed regardless of the strain considered. Contact angle measurements and the analysis of the number of remaining adhering cells after being subjected to external forces further suggest that both specific and nonspecific (hydrophobic) interactions play an important role on bacterial attachment. This study is the first one to evaluate the influence of surface hydrophobicity on protein adsorption and its subsequent effect on bacterial adhesion using a material whose hydrophobicity was not modified using chemical treatments that potentially led to surface properties changes other than hydrophobicity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.34447DOI Listing

Publication Analysis

Top Keywords

bacterial adhesion
16
human plasma
8
plasma fibronectin
8
hydrophobic hydrophilic
8
hydrophilic ti6al4v
8
ti6al4v substrata
8
adsorbed protein
8
initial protein
8
extended conformation
8
protein
7

Similar Publications

Camel mastitis especially caused by Staphylococcus aureus (S. aureus), is a major risk to animal health and milk production. The current investigation evaluated the antibiotic susceptibility and virulence factors of S.

View Article and Find Full Text PDF

Purpose: Streptococcus suis serotype 14 is the second most prevalent serotype being highly prevalent in Southeast Asia. This study aimed to characterize genetic background, population structure, virulent genes, antimicrobial-resistant genes, and virulence of human S. suis serotype 14.

View Article and Find Full Text PDF

Carbapenem-Resistant Adherence to Magnetic Nanoparticles.

Nanomaterials (Basel)

December 2024

Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA.

Carbapenem-resistant (CRE) is an emerging global concern. Specifically, carbapenemase-producing (CP) strains in CRE have recently been found in clinical, environmental, and food samples worldwide, causing many hospitalizations and deaths. Their rapid identification and characterization are paramount in control, management options, and treatment choices.

View Article and Find Full Text PDF

The local application of broad-spectrum antibiotics via polymeric drug delivery systems is a promising alternative to their systemic administration in wound healing, prevention and treatment of infections associated with surgical implants. However, low and poorly controlled loading efficiency and 100% burst release are common problems for the materials with weak physical interaction between antibiotics and polymeric matrices. Here, we report a new multifunctional carboxymethyl chitosan (CMC) cryogel, which efficiently prevents bacterial adhesion to the surface, kills bacteria in the solution via controlled release of ciprofloxacin (CIP), and promotes fibroblast proliferation.

View Article and Find Full Text PDF

To address the issues of infectious virus, bacterial secondary infections, skin pigmentation, and scarring caused by monkeypox virus (MPXV), a sprayable hydrogel with versatile functions was developed with comprehensive properties. Based on current research, the bioactive deep eutectic solvent (DES) of rosmarinic acid-proanthocyanidin-glycol (RPG) was designed and synthesized as active agent, and molecular docking was applied to discover its binding to MPXV proteins through H-bonds and van der Waals interactions, and the docking results show the binding energies between RA, PC, Gly and MPXV proteins are -58.7188, -50.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!