AI Article Synopsis

  • The study investigates the role of the protein Sirt6 in regulating inflammation and finds that Sirt6 deficiency leads to chronic liver inflammation in mice starting at around 2 months of age.
  • Sirt6(-/-) mice showed increased inflammatory markers in their immune cells and developed liver fibrosis, pinpointing the role of Sirt6 in immune cells as a key factor in inflammation.
  • The research reveals that Sirt6 interacts with a protein called c-JUN and helps regulate the expression of proinflammatory genes, indicating that Sirt6 has an anti-inflammatory function by inhibiting the c-JUN signaling pathway.

Article Abstract

The human body has a remarkable ability to regulate inflammation, a biophysical response triggered by virus infection and tissue damage. Sirt6 is critical for metabolism and lifespan; however, its role in inflammation is unknown. Here we show that Sirt6-null (Sirt6(-/-)) mice developed chronic liver inflammation starting at ∼2 months of age, and all animals were affected by 7-8 months of age. Deletion of Sirt6 in T cells or myeloid-derived cells was sufficient to induce liver inflammation and fibrosis, albeit to a lesser degree than that in the global Sirt6(-/-) mice, suggesting that Sirt6 deficiency in the immune cells is the cause. Consistently, macrophages derived from the bone marrow of Sirt6(-/-) mice showed increased MCP-1, IL-6, and TNFα expression levels and were hypersensitive to LPS stimulation. Mechanistically, SIRT6 interacts with c-JUN and deacetylates histone H3 lysine 9 (H3K9) at the promoter of proinflammatory genes whose expression involves the c-JUN signaling pathway. Sirt6-deficient macrophages displayed hyperacetylation of H3K9 and increased occupancy of c-JUN in the promoter of these genes, leading to their elevated expression. These data suggest that Sirt6 plays an anti-inflammatory role in mice by inhibiting c-JUN-dependent expression of proinflammatory genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516737PMC
http://dx.doi.org/10.1074/jbc.M112.415182DOI Listing

Publication Analysis

Top Keywords

liver inflammation
12
sirt6-/- mice
12
chronic liver
8
inflammation fibrosis
8
c-jun signaling
8
months age
8
proinflammatory genes
8
sirt6
6
inflammation
5
mice
5

Similar Publications

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

Background: HIV and tuberculosis (TB) co-infection poses a significant health challenge, particularly when involving the central nervous system (CNS), where it leads to severe morbidity and mortality. Current treatments face challenges such as drug resistance, immune reconstitution inflammatory syndrome (IRIS), and persistent inflammation. Glutathione (GSH) has the therapeutic potential to enhance treatment outcomes by improving antibiotic efficacy, reducing inflammation, and mitigating immune dysfunction.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) is a major public health concern responsible for hepatitis and hepatocellular carcinoma (HCC) worldwide. In Mozambique, HBsAg prevalence is high and endemic, and despite the strategies to mitigate the spread of the disease, the HCC incidence is still high and one of the highest in the world. There is still limited data on the serological profile and molecular epidemiology of HBV in Mozambique given the burden of this disease.

View Article and Find Full Text PDF

The Rift Valley fever virus (RVFV) causes haemorrhagic fever, encephalitis, and permanent blindness and has been listed by the WHO as a priority pathogen. To study RVFV pathogenesis and identify small-molecule antivirals, we established a novel In Vivo model using zebrafish larvae. Pericardial injection of RVFV resulted in ~4 log viral RNA copies/larva, which was inhibited by the antiviral 2'-fluoro-2'-deoxycytidine.

View Article and Find Full Text PDF

Co-Infection of Mosquitoes with Rift Valley Fever Phlebovirus Strains Results in Efficient Viral Reassortment.

Viruses

January 2025

Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA.

Rift Valley fever phlebovirus (RVFV) is a zoonotic mosquito-borne pathogen endemic to sub-Saharan Africa and the Arabian Peninsula which causes Rift Valley fever in ruminant livestock and humans. Co-infection with divergent viral strains can produce reassortment among the L, S, and M segments of the RVFV genome. Reassortment events can produce novel genotypes with altered virulence, transmission dynamics, and/or mosquito host range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!