Background: DNA methylation plays an essential role in regulating gene expression under a variety of conditions and it has therefore been hypothesized to underlie the transitions between life cycle stages in parasitic nematodes. So far, however, 5'-cytosine methylation has not been detected during any developmental stage of the nematode Caenorhabditis elegans. Given the new availability of high-resolution methylation detection methods, an investigation of life cycle methylation in a parasitic nematode can now be carried out.

Results: Here, using MethylC-seq, we present the first study to confirm the existence of DNA methylation in the parasitic nematode Trichinella spiralis, and we characterize the methylomes of the three life-cycle stages of this food-borne infectious human pathogen. We observe a drastic increase in DNA methylation during the transition from the new born to mature stage, and we further identify parasitism-related genes that show changes in DNA methylation status between life cycle stages.

Conclusions: Our data contribute to the understanding of the developmental changes that occur in an important human parasite, and raises the possibility that targeting DNA methylation processes may be a useful strategy in developing therapeutics to impede infection. In addition, our conclusion that DNA methylation is a mechanism for life cycle transition in T. spiralis prompts the question of whether this may also be the case in any other metazoans. Finally, our work constitutes the first report, to our knowledge, of DNA methylation in a nematode, prompting a re-evaluation of phyla in which this epigenetic mark was thought to be absent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053732PMC
http://dx.doi.org/10.1186/gb-2012-13-10-r100DOI Listing

Publication Analysis

Top Keywords

dna methylation
32
life cycle
16
parasitic nematode
12
methylation
11
stages parasitic
8
nematode trichinella
8
trichinella spiralis
8
methylation parasitic
8
dna
7
nematode
5

Similar Publications

Recent genomic studies have allowed the subdivision of intracranial ependymomas into molecularly distinct groups with highly specific clinical features and outcomes. The majority of supratentorial ependymomas (ST-EPN) harbor ZFTA-RELA fusions which were designated, in general, as an intermediate risk tumor variant. However, molecular prognosticators within ST-EPN ZFTA-RELA have not been determined yet.

View Article and Find Full Text PDF

The transsulfuration (TSS) pathway is an alternative source of cysteine for glutathione synthesis. Little of the TSS pathway in antioxidant capacity in sickle cell disease (SCD) is known. Here, we evaluate the effects of TSS pathway activation through cystathionine beta-synthase (CBS) to attenuate reactive oxygen species (ROS) and ferroptosis stresses in SCD.

View Article and Find Full Text PDF

Cooperative condensation of RNA-DIRECTED DNA METHYLATION 16 splicing isoforms enhances heat tolerance in Arabidopsis.

Nat Commun

January 2025

The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China.

Dissecting the mechanisms underlying heat tolerance is important for understanding how plants acclimate to heat stress. Here, we identify a heat-responsive gene in Arabidopsis thaliana, RNA-DIRECTED DNA METHYLATION 16 (RDM16), which encodes a pre-mRNA splicing factor. Knockout mutants of RDM16 are hypersensitive to heat stress, which is associated with impaired splicing of the mRNAs of 18 out of 20 HEAT SHOCK TRANSCRIPTION FACTOR (HSF) genes.

View Article and Find Full Text PDF

Methionine-driven methylation modification overcomes plasmid-mediated high-level tigecycline resistance.

Nat Commun

January 2025

Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.

Tigecycline is a last-resort antibiotic to treat complicated infections caused by multidrug-resistant pathogens, while the emergence of plasmid-mediated tet(X) family severely compromises its clinical efficacy. Novel antimicrobial strategies not limited to new antibiotics in pharmaceutical pipeline are urgently needed. Herein, we reveal the metabolic disparities between tet(X)-negative and -positive E.

View Article and Find Full Text PDF

Current advances and future prospects of blood-based techniques for identifying benign and malignant pulmonary nodules.

Crit Rev Oncol Hematol

January 2025

Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China. Electronic address:

Lung cancer is the leading cause of cancer-related mortality worldwide, highlighting the urgent need for more accurate and minimally invasive diagnostic tools to improve early detection and patient outcomes. While low-dose computed tomography (LDCT) is effective for screening in high-risk individuals, its high false-positive rate necessitates more precise diagnostic strategies. Liquid biopsy, particularly ctDNA methylation analysis, represents a promising alternative for non-invasive classification of indeterminate pulmonary nodules (IPNs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!