Gene expression is primarily regulated by cis-regulatory DNA elements and trans-interacting proteins. Transcription factors bind in a DNA sequence-specific manner and recruit activities that modulate the association and activity of transcription complexes at specific genes. Often, transcription factors belong to families of related proteins that interact with similar DNA sequences. Furthermore, genes are regulated by multiple, sometimes redundant, cis-regulatory elements. Thus, the analysis of the role of a specific DNA regulatory sequence and the interacting proteins in the context of intact cells is challenging. In this study, we designed and functionally characterized an artificial DNA-binding domain that neutralizes the function of a cis-regulatory DNA element associated with adult β-globin gene expression. The zinc finger DNA-binding domain (ZF-DBD), comprising six ZFs, interacted specifically with a CACCC site located 90 bp upstream of the transcription start site (-90 β-ZF-DBD), which is normally occupied by KLF1, a major regulator of adult β-globin gene expression. Stable expression of the -90 β-ZF-DBD in mouse erythroleukemia cells reduced the binding of KLF1 with the β-globin gene, but not with locus control region element HS2, and led to reduced transcription. Transient transgenic embryos expressing the -90 β-ZF-DBD developed normally but revealed reduced expression of the adult β-globin gene. These results demonstrate that artificial DNA-binding proteins lacking effector domains are useful tools for studying and modulating the function of cis-regulatory DNA elements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497758 | PMC |
http://dx.doi.org/10.1073/pnas.1207677109 | DOI Listing |
Genome-wide association studies (GWAS) of melanoma risk have identified 68 independent signals at 54 loci. For most loci, specific functional variants and their respective target genes remain to be established. Capture-HiC is an assay that links fine-mapped risk variants to candidate target genes by comprehensively mapping cell-type specific chromatin interactions.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
July 2024
Southern Hospital affiliated with Shenzhen University, Shenzhen Guangdong 518001, China.
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype with poor prognosis. RNA alternative splicing dysregulation plays a critical role in the initiation and progression of TNBC. This article systematically introduces the basic process of RNA splicing and then focuses on reviewing the aberrant alternative splicing events and their biological effects in TNBC: 1) Multiple splicing-related factors promote tumor cell proliferation and mediate chemotherapy resistance by regulating the alternative splicing of genes involved in cell survival and drug response; 2) dysregulation of splicing regulatory networks leads to altered splicing of multiple metastasis-related genes, promoting tumor invasion and metastasis; 3) aberrant alternative splicing events participate in tumor progression by affecting the expression of DNA damage repair genes; 4) dysregulation of alternative splicing is also involved in the regulation of tumor immune evasion and stem cell properties.
View Article and Find Full Text PDFNat Genet
January 2025
Calico Life Sciences LLC, South San Francisco, CA, USA.
Sequence-based machine-learning models trained on genomics data improve genetic variant interpretation by providing functional predictions describing their impact on the cis-regulatory code. However, current tools do not predict RNA-seq expression profiles because of modeling challenges. Here, we introduce Borzoi, a model that learns to predict cell-type-specific and tissue-specific RNA-seq coverage from DNA sequence.
View Article and Find Full Text PDFCell Syst
December 2024
The Edison Family Center for Genome Sciences & Systems Biology, Saint Louis, MO 63110, USA; Department of Genetics, Saint Louis, MO 63110, USA. Electronic address:
Deep learning is a promising strategy for modeling cis-regulatory elements. However, models trained on genomic sequences often fail to explain why the same transcription factor can activate or repress transcription in different contexts. To address this limitation, we developed an active learning approach to train models that distinguish between enhancers and silencers composed of binding sites for the photoreceptor transcription factor cone-rod homeobox (CRX).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, The University of Mississippi, University, MS, 38677, USA.
During development, cells of the nervous system begin as unspecified precursors and proceed along one of two developmental paths to become either neurons or glia. Work in the fruit fly Drosophila melanogaster has established the role of the transcription factor Glial cells missing (Gcm) in directing neuronal precursor cells to assume a glial cell fate. Gcm acts on many target genes, one of which is reversed polarity (repo).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!