Carbamylated erythropoietin ameliorates hypoxia-induced cognitive and behavioral defects with the generation of choline acetyltransferase-positive neurons.

J Neurosci Res

Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.

Published: January 2013

Carbamylated erythropoietin (CEPO) is attracting widespread interest because of its neuroprotective effects without influencing erythropoiesis. Here we show that CEPO, unlike EPO, does not stimulate erythropoiesis. Both CEPO and EPO inhibit the death/apoptosis of neurons in the hypoxic model of primary neurons and induce neuron proliferation and differentiation in hypoxic mice. Hypoxic mice show apparent memory deficits at 3 and 30 days after hypoxia. The administration of CEPO/EPO significantly improves cognitive and behavioral defects after hypoxic insults. Further investigation shows that CEPO/EPO induces neuron proliferation and differentiation and promotes the generation of choline acetyltransferase (ChAT)(+) neurons in hypoxic mice. Phosphorylated AKT was colabeled with ChAT(+) neurons and coexpressed in bromodeoxyuridine-positive cells, suggesting that the PI3K/AKT pathway may play a pivotal role in CEPO/EPO-cholinergic neuron generation. These results reveal that CEPO/EPO ameliorates hypoxia-induced cognitive and behavioral defects possibly through the generation of ChAT-positive neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.23124DOI Listing

Publication Analysis

Top Keywords

cognitive behavioral
12
behavioral defects
12
hypoxic mice
12
carbamylated erythropoietin
8
ameliorates hypoxia-induced
8
hypoxia-induced cognitive
8
defects generation
8
generation choline
8
erythropoiesis cepo
8
cepo epo
8

Similar Publications

Introduction: Alzheimer's disease (AD) in Down syndrome (DS) is associated with changes in brain structure. It is unknown if thickness and volumetric changes can identify AD stages and if they are similar to other genetic forms of AD.

Methods: Magnetic resonance imaging scans were collected for 178 DS adults (106 nonclinical, 45 preclinical, and 27 symptomatic).

View Article and Find Full Text PDF

Previous investigations have revealed the role of GABAergic and serotonergic systems in the modulation of pain behavior. This research aimed to examine the effects of intracerebroventricular (i.c.

View Article and Find Full Text PDF

We evaluated a digital cognitive assessment platform, Philips IntelliSpace Cognition, in a case-control study of patients diagnosed with mild cognitive impairment (MCI) and cognitively normal (CN) older adults. Performance on individual neuropsychological tests, cognitive -scores, and Alzheimer's disease (AD)-specific composite scores was compared between the CN and MCI groups. These groups were matched for age, sex, and education.

View Article and Find Full Text PDF

Amidst growing concerns over COVID-19 aftereffects like fatigue and cognitive issues, NRICM101, a traditional Chinese medicine, has shown promise. Used by over 2 million people globally, it notably reduces hospitalizations and intubations in COVID-19 patients. To explore whether NRICM101 could combat COVID-19 brain fog, we tested NRICM101 on hACE2 transgenic mice administered the S1 protein of SARS-CoV-2, aiming to mitigate S1-induced cognitive issues by measuring animal behaviors, immunohistochemistry (IHC) staining, and next-generation sequencing (NGS) analysis.

View Article and Find Full Text PDF

Visual processing is crucial for sports performance, influencing athletes' ability to interpret and respond to visual stimuli. This study investigated distinct visual processing patterns among Thai elite athletes in gymnastics, soccer, and esports, utilizing visual P300 event-related potentials (P300 ERPs). Forty-two female athletes (14 gymnasts, 14 soccer players, and 14 esports athletes) participated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!