Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.3408DOI Listing

Publication Analysis

Top Keywords

eyespot fungi
8
oculimacula acuformis
8
acuformis oculimacula
8
oculimacula yallundae
8
winter wheat
8
resistance
8
acuformis yallundae
8
yallundae
5
fungicide resistance
4
resistance status
4

Similar Publications

Common wheat ( L.) is the world's primary food crop, and ensuring its safe production is of utmost importance for global peace and human development. However, the continuous threat of fungal diseases, including Fusarium head scab, rusts, sharp eyespot, and powdery mildew (PM), poses a significant challenge to production.

View Article and Find Full Text PDF

Genome-wide analysis and characterization of the TaTLP gene family in wheat and functional characterization of the TaTLP44 in response to Rhizoctonia cerealis.

Plant Physiol Biochem

February 2024

Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:

Article Synopsis
  • * Researchers identified 131 wheat thaumatin-like protein (TaTLP) genes, including 38 newly discovered ones, and explored their genetic structure, properties, and response to R. cerealis infection.
  • * Gene silencing of TaTLP44 revealed it negatively regulates wheat's resistance by influencing defense-related genes, suggesting potential pathways for enhancing plant resilience to diseases.
View Article and Find Full Text PDF

The Antarctic green alga is an obligate psychrophile and an emerging model for photosynthetic adaptation to extreme conditions. Endemic to the ice-covered Lake Bonney, this alga thrives at highly unusual light conditions characterized by very low light irradiance (<15 μmol m s), a narrow wavelength spectrum enriched in blue light, and an extreme photoperiod. Genome sequencing of exposed an unusually large genome, with hundreds of highly similar gene duplicates and expanded gene families, some of which could be aiding its survival in extreme conditions.

View Article and Find Full Text PDF

Rice blast, caused by , is the most destructive rice disease worldwide. The disease symptoms are usually expressed on the leaf and panicle. The leaf disease intensity in controlled environmental conditions is frequently quantified using a 0 to 5 scale, where 0 represents the absence of symptoms, and 5 represents large eyespot lesions.

View Article and Find Full Text PDF

Sharp eyespot is a crucial disease affecting cereal plants, such as bread wheat () and barley (), and is primarily caused by the pathogenic fungus . As disease severity has increased, it has become imperative to find an effective and reasonable control strategy. One such strategy is the use of the trehalose analog, validamycin, which has been shown to have a potent inhibitory effect on several trehalases found in both insects and fungi, and is widely used as a fungicide in agriculture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!