Mechanisms of dorsoventral axis formation and its clinical implications.

Beijing Da Xue Xue Bao Yi Xue Ban

Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.

Published: October 2012

Dorsal-ventral axis formation is one of the earliest and the most important steps of patterning formation during early embryogenesis. The molecular basis of dorsoventral axis formation reflects the fundamental issues of orchestrated cell proliferation and differentiation. Wildly speculated since the Renaissance, the effort of deciphering the mechanisms of Dorsal-ventral axis formation has contributed significantly to our current understanding of disease pathogenesis. Here, we focused our discussion on the recent discovery of the convergence of dorsal and ventral signaling pathways during early embryogenesis and its implications in cancer biology and beyond.

Download full-text PDF

Source

Publication Analysis

Top Keywords

axis formation
16
dorsoventral axis
8
dorsal-ventral axis
8
early embryogenesis
8
formation
5
mechanisms dorsoventral
4
axis
4
formation clinical
4
clinical implications
4
implications dorsal-ventral
4

Similar Publications

Aim: Snakes exhibit remarkable physiological shifts when their large meals induce robust postprandial growth after prolonged fasting. To understand the regulatory mechanisms underlying this rapid metabolic transition, we examined the regulation of protein synthesis in pythons, focusing on processes driving early postprandial tissue remodeling and growth.

Methods: Using the SUnSET method with puromycin labeling, we measured in vivo protein synthesis in fasting and digesting snakes at multiple post-feeding intervals.

View Article and Find Full Text PDF

Transketolase promotes osteosarcoma progression through the YY1-PAK4 axis.

FEBS J

January 2025

Department of Orthopedics, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Osteosarcoma, a malignant bone tumor that occurs in adolescents, proliferates and is prone to pulmonary metastasis. Osteosarcoma is characterized by high genotypic heterogeneity, making it difficult to identify reliable anti-osteosarcoma targets. The genotype of osteosarcoma may be highly dynamic, but its high dependence on energy remains constant.

View Article and Find Full Text PDF

Role of NLRP3 Inflammasome in Chronic Pain and Alzheimer's Disease-A Review.

J Biochem Mol Toxicol

February 2025

Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, People's Republic of China.

The coexistence of Alzheimer's disease (AD) and chronic pain (CP) in the elderly population has been extensively documented, and a growing body of evidence supports the potential interconnections between these two conditions. This comprehensive review explores the mechanisms by which CP may contribute to the development and progression of AD, with a particular focus on neuroinflammatory pathways and the role of microglia, as well as the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. The review proposes that prolonged pain processing in critical brain regions can dysregulate the activity of the NLRP3 inflammasome within microglia, leading to the overproduction of pro-inflammatory cytokines and excessive oxidative stress in these regions.

View Article and Find Full Text PDF

ACSL1 Aggravates Thromboinflammation by LPC/LPA Metabolic Axis in Hyperlipidemia Associated Myocardial Ischemia-Reperfusion Injury.

Adv Sci (Weinh)

January 2025

Shanghai Key Laboratory of Vascular Lesions and Remodeling, Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.

Acute myocardial infarction (AMI) is associated with well-established metabolic risk factors, especially hyperlipidemia and obesity. Myocardial ischemia-reperfusion injury (mIRI) significantly offsets the therapeutic efficacy of revascularization. Previous studies indicated that disrupted lipid homeostasis can lead to lipid peroxidation damage and inflammation, yet the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Developmental exposure to benzo[a]pyrene (BaP), a ubiquitous environmental pollutant, has been linked to various toxic effects, including multigenerational behavioral impairment. While the specific mechanisms driving BaP neurotoxicity are not fully understood, recent work highlights two important determinants of developmental BaP neurotoxicity: (1) the aryl hydrocarbon receptor (AHR), which induces host metabolism of BaP, and (2) the gut microbiome, which may interact with BaP to affect its metabolism, or be perturbed by BaP to disrupt the gut-brain axis. We utilized the zebrafish model to explore the role of AHR, the gut microbiome, and their interaction, on BaP-induced neurotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!