Oxovanadium(V) complexes [VO(NH(2)O)(2)(val)] and [VO(NH(2)O)(2)(met)] caused inhibition of cell proliferation in two osteoblast cell lines, MC3T3-E1 and UMR106, as well as the viability of zebrafish eggs. In MC3T3-E1, both compounds inhibited cell proliferation (up to ca. 40% at 25 μM [VO(NH(2)O)(2)(val)] and 25% at 25 μM [VO(NH(2)O)(2)(met)]). This effect occurs in a dose response manner from 2.5 μM (p < 0.01) with a more deleterious action of [VO(NH(2)O)(2)(met)]. In UMR106 tumoral cells, [VO(NH(2)O)(2)(val)] inhibited cell proliferation up to 75% from 25 μM while [VO(NH(2)O)(2)(met)] behaved as an inhibitory agent in the whole range of concentrations (p < 0.01). Similar toxic effects were obtained from morphological studies in cell cultures. Moreover, the IC(50) values for both complexes in culture studies correlated with the IC(50) values obtained with an in vivo model of toxicity (FET test). Besides, the cytotoxicity evaluation in cell culture showed a decrease in mitochondrial activity which was stronger for [VO(NH(2)O)(2)(met)] than for [VO(NH(2)O)(2)(val)] (44% vs. 58% at 25 μM) in both cell lines (p < 0.001). Genotoxicity assessed by micronuclei induction also showed a stronger effect of [VO(NH(2)O)(2)(met)] in both cell lines. Besides, [VO(NH(2)O)(2)(val)] caused DNA damage determined by comet formation in MC3T3-E1 cells in the range of 2.5-25 μM, while this effect could not be observed in the osteosarcoma cells. On the other hand, [VO(NH(2)O)(2)(val)] enhanced ROS levels over basal up to 225% and 170% at 100 μM in MC3T3-E1 and UMR106 cells, respectively (p < 0.01). For [VO(NH(2)O)(2)(met)] a similar situation was observed, suggesting an important role for oxidative stress in the toxicity mechanism of action. Although both complexes showed interesting results that would deserve further drug development [VO(NH(2)O)(2)(val)] was more stable than [VO(NH(2)O)(2)(met)] in the solid state. Therefore, we consider that [VO(NH(2)O)(2)(val)] is a good candidate to be tested in in vivo models as a potential antitumoral agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2mt20091k | DOI Listing |
Pharm Dev Technol
January 2025
Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of CM, No. 19, Renmin Road, Jinshui District, Zhengzhou City, Henan Province, China.
This study systematically explores the oncogenic role of the long non-coding RNA (lncRNA) LINC00115 in endometrial cancer (EC) and reveals its unique mechanism in promoting proliferation, invasion, and metastasis via the JAK/STAT signaling pathway. LINC00115 is significantly upregulated in EC tissues and closely associated with advanced TNM staging and lymph node metastasis. Functional assays showed that knockdown of LINC00115 suppressed EC cell proliferation, invasion, and metastasis, while overexpression enhanced these malignant behaviors.
View Article and Find Full Text PDFCirc Cardiovasc Imaging
January 2025
Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC (H.A., A.D.D., M.A.D.).
J Biomed Mater Res A
January 2025
Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
The immune response is modulated by a diverse array of signals within the tissue microenvironment, encompassing biochemical factors, mechanical forces, and pressures from adjacent tissues. Furthermore, the extracellular matrix and its constituents significantly influence the function of immune cells. In the case of carcinogenesis, changes in the biophysical properties of tissues can impact the mechanical signals received by immune cells, and these signals can be translated into biochemical signals through mechano-transduction pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!