Syndromes constitute a core aspect in the study of Chinese medicine, and research on the concept of syndromes is important to the study of the process of modernization of traditional Chinese medicine. However, it is somewhat challenging to define a syndrome due to the complexity inherent in the subject, even with the assistance of the reductionism approach of modern medicine. Holistic and dynamic in nature and attaching much importance to functional changes, the newly emerging metabonomics is in many ways inline with the concepts of syndrome differentiation of pathological states in traditional Chinese medicine. Therefore, metabonomics has comparatively strong advantages in the very respect of revealing the natural laws of syndrome differentiation. By reviewing and analyzing the current research on the concept of syndromes and the application of metabonomic technology to exploring the essential core of syndrome differentiation, the authors illustrated the potential commonalities. This would also show the issues requiring attention between the study of syndromes and the metabonomic technology. In the meantime this study reflected the core problems in detail and put forward suggestions with regard to reaching solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3736/jcim20121001 | DOI Listing |
Cell Rep
January 2025
Division of Cell Regulation, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Cell Engineering, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Ibaraki, Japan. Electronic address:
Hematopoietic stem cells (HSCs) possess the capacity to regenerate the entire hematopoietic system. However, the precise HSC dynamics in the early post-transplantation phase remain an enigma. Clinically, the initial hematopoiesis in the post-transplantation period is critical, necessitating strategies to accelerate hematopoietic recovery.
View Article and Find Full Text PDFCardiovasc Toxicol
January 2025
The Second Department of Cardiovascular Medicine, Baoji People's Hospital, Baoji, China.
Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.
View Article and Find Full Text PDFInt Urol Nephrol
January 2025
Department of Nephrology, Jiangxi Medical College, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.
Purpose: To clarify the causal association between cardiovascular proteins and diabetic nephropathy (DN) in Europeans.
Methods: The large genome-wide association study data of cardiovascular proteins and DN were used for this two-sample Mendelian randomization (MR) analysis. We took the Inverse variance weighted (IVW) as the primary method.
Discov Oncol
January 2025
Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China.
This study aims to investigate the expression of seven cancer testis antigens (MAGE-A1, MAGE-A4, MAGE-A10, MAGE-A11, PRAME, NY-ESO-1 and KK-LC-1) in pan squamous cell carcinoma and their prognostic value, thus assessing the potential of these CTAs as immunotherapeutic targets. The protein expression of these CTAs was evaluated by immunohistochemistry in 60 lung squamous cell carcinoma (LUSC), 62 esophageal squamous cell carcinoma (ESCA) and 62 head and neck squamous cell carcinoma (HNSC). The relationship between CTAs expression and progression-free survival (PFS) was assessed.
View Article and Find Full Text PDFCytotherapy
January 2025
Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada. Electronic address:
The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!