Mastitis-inflammation of the mammary gland is an important disease affecting dairy animals worldwide. The disease is caused by mammary pathogenic bacteria, and Escherichia coli is frequently implicated. Intramammary challenge with bacterial LPS is sufficient to elicit the disease. However, using toll-like receptor (TLR) 4-deficient mice, we previously found that mammary pathogenic E. coli is still able to elicit neutrophil recruitment, indicating the presence of bacterial virulence factors other than LPS. To date, no specific virulence factors have been identified in E. coli isolates associated with mastitis, and other microbe-associated molecular patterns (MAMPs), such as bacterial lipoproteins, are prime candidates. The synthetic analog of bacterial lipopeptides, Pam3CSK4, is recognized by TLR2 and mimics the proinflammatory properties of triacylated lipoproteins of Gram-negative bacteria. The aim of the present work was to determine the role of bacterial lipoproteins recognized by TLR2 on mammary cells as virulence factors in the mammary gland. Using the murine mastitis model, we previously showed that following intramammary LPS challenge, neutrophil recruitment is strictly dependent on alveolar macrophages. Thus, the role of alveolar macrophages in the response to intramammary bacterial lipoprotein challenge was also studied. Here, Pam3CSK4 infusion induced mastitis in wild-type mice, but not in TLR2-deficient mice. The wild-type phenotype was not restored by adoptive transfer of TLR2-expressing macrophages into the alveolar milk space of TLR2-deficient mice, indicating that cells other than alveolar macrophages are essential for Pam3CSK4/TLR2 signaling. In contrast to the Pam3CSK4 treatment, infection with E. coli P4 resulted in inflammation, even in the absence of TLR2 signaling, indicating that lipoproteins are sufficient, but not essential virulence factors in the pathogenesis of the intact bacteria. However, in the absence of TLR2, the infecting E. coli P4 invaded the alveolar epithelial cells and formed intracellular bacterial communities, indicating that intact lipoprotein/TLR2 signaling is essential to restricting bacterial invasion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetimm.2012.09.030 | DOI Listing |
Viruses
December 2024
Instituto de Investigación Sanitaria Aragón, 50009 Zaragoza, Spain.
This study explores the relationship between specific SARS-CoV-2 mutations and obesity, focusing on how these mutations may influence COVID-19 severity and outcomes in high-BMI individuals. We analyzed 205 viral mutations from a cohort of 675 patients, examining the association of mutations with BMI, hospitalization, and mortality rates. Logistic regression models and statistical analyses were applied to assess the impact of significant mutations on clinical outcomes, including inflammatory markers and antibody levels.
View Article and Find Full Text PDFPathogens
January 2025
Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
The emergence of hypervirulent and carbapenem-resistant hypermucoviscous strains presents a significant public health challenge due to their increased virulence and resistance to multiple antibiotics. This study evaluates the antibiotic susceptibility patterns and virulence profiles of classical and hypervirulent strains isolated from various clinical samples. A total of 500 clinical samples were collected from patients at the Mardan Medical Complex and Ayub Medical Complex in KPK between July 2022 and June 2024.
View Article and Find Full Text PDFPathogens
January 2025
Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye.
Consuming raw or undercooked mussels can lead to gastroenteritis and septicemia due to contamination. This study analyzed the prevalence, density, species diversity, and molecular traits of spp. in 48 fresh raw wild mussels (FRMs) and 48 ready-to-eat stuffed mussels (RTE-SMs) through genome analysis, assessing health risks.
View Article and Find Full Text PDFPathogens
December 2024
Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy.
The intratumoral microbiome plays a significant role in many cancers, such as lung, pancreatic, and colorectal cancer. Pancreatic cancer (PC) is one of the most lethal malignancies and is often diagnosed at advanced stages. , an anaerobic Gram-negative bacterium primarily residing in the oral cavity, has garnered significant attention for its emerging role in several extra-oral human diseases and, lately, in pancreatic cancer progression and prognosis.
View Article and Find Full Text PDFLife (Basel)
January 2025
Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Odborarske nam. 14, 811 08 Bratislava, Slovakia.
Recent research highlights compelling links between oral health, particularly periodontitis, and systemic diseases, including Alzheimer's disease (AD). Although the biological mechanisms underlying these associations remain unclear, the role of periodontal pathogens, particularly , has garnered significant attention. , a major driver of periodontitis, is recognized for its potential systemic effects and its putative role in AD pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!