NK cells and T cells are commonly dysfunctional in CML, and their status may determine the course of disease. We aimed to define the molecular mechanisms of leukemia-induced immunosuppression with focus on the role of ROS and the PARP-1 pathway of cell death. Malignant granulocytes from patients with BCR-ABL-positive CML expressed the oxygen radical-producing enzyme NOX, produced large amounts of ROS, and triggered extensive cell death in NK cells. Inhibition of PARP-1 maintained NK cell viability in cocultures with suppressive leukemic cells. Under conditions of oxidative stress, PARP-1 inhibition upheld the capacity of NK cells to kill myeloid leukemic cells, in addition to restoring the proliferation and cytokine production of NK cells and cytotoxic T cells. Our findings are suggestive of a novel pathway of relevance to immunosuppression in CML.

Download full-text PDF

Source
http://dx.doi.org/10.1189/jlb.0512257DOI Listing

Publication Analysis

Top Keywords

leukemic cells
12
cell death
12
cells
9
myeloid leukemic
8
chronic myeloid
4
cells trigger
4
trigger polyadp-ribose
4
polyadp-ribose polymerase-dependent
4
polymerase-dependent inactivation
4
cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!