Mucus secretion from the body is ubiquitous, and finding materials that resist mucus adhesion is a major technological challenge. Here, using a high throughput platform with photo-induced graft polymerization, we first rapidly synthesized, screened and tested a library of 55 different surfaces from six functional monomer classes to discover porcine intestinal low mucus adhesion surfaces using a 1h static mucus adsorption protocol. From this preliminary screen, two chemistries, a zwitterionic ([2-(acryloyloxy)ethyl] trimethylammonium chloride) and a multiple hydroxyl (N-[tris(hydroxymethyl)methyl]acrylamide) surface, exhibited significantly low mucus adhesion from a Langmuir-type isotherm when exposed to increasing concentrations of mucus for 24 h. Apolar or hydrophobic interactions were likely the dominant attractive forces during mucus binding since many polar or hydrophilic monomers reduced mucus adhesion. Hansen solubility parameters were used to illustrate the importance of monomer polarity and hydrogen bonding in reducing mucus adsorption. For a series of polyethylene glycol (PEG) monomers with changing molecular weight from 144 g mol⁻¹ to 1100 g mol⁻¹, we observed an excellent linear correlation (R²=0.998) between relative amount adsorbed and the distance from a water point in a specialized Hansen solubility parameter plot, emphasizing the role of surface-water interactions for PEG modified surfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953495 | PMC |
http://dx.doi.org/10.1016/j.actbio.2012.10.013 | DOI Listing |
Food Funct
January 2025
Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
Inflammatory bowel disease (IBD) is a chronic inflammation with a high incidence rate. Many probiotics, including (), have shown promise in IBD treatment. The therapeutic effects of most probiotics are greatly decided by the available live cells in the disease lesion, which is compromised as they pass through the gastric juice and intestinal tract, resulting in a loss of activity.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
January 2025
School of Pharmacy and Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.
Nucleic acid-based vaccines are leading-edge tools in developing next-generation preventative care. Much research has been done to convert vaccine gene therapy from an invasive to a noninvasive administration approach. The lung's large surface area and permeability make the pulmonary route a promising noninvasive delivery option for vaccines, with systemic and local applications.
View Article and Find Full Text PDFJ Virol
December 2024
Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
Phages, as antagonists of bacteria, hold significant promise for combating drug-resistant bacterial infections. Their host specificity allows phages to target pathogenic bacteria without disrupting the gut microbiota, offering distinct advantages in the prevention and control of intestinal pathogens. The interaction between the phage and the gut plays a crucial role in the efficacy of phage-mediated bacterial killing.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
As marine equipment advances from shallow to deep-sea environments, the demand for high-performance antifouling materials continues to increase. The lionfish, a species inhabiting both deep-sea and shallow coral reefs, prevents fouling organism adhesion via its smooth, mucus-covered skin, which contains antimicrobial peptides. Inspired by lionfish skin, this work integrates zwitterionic segments with hydration-based fouling-release properties and the furan oxime ester structure with intrinsic antibacterial activity to develop a silicone-based antifouling coating capable of operating from shallow to deep-sea environments.
View Article and Find Full Text PDFJ Control Release
December 2024
School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China. Electronic address:
Therapeutic challenges of chronic pulmonary infections caused by multidrug-resistant Pseudomonas aeruginosa (MDRP. aeruginosa) biofilms due to significantly enhanced antibiotic resistance. This resistance is driven by reduced outer membrane permeability, biofilm barriers, and excessive secretion of virulence factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!