The effect of shear flow and carbon nanotubes (CNTs), separately and together, on nonisothermal crystallization of poly(lactic acid) (PLA) at a relatively large cooling rate was investigated by time-resolved synchrotron wide-angle X-ray diffraction (WAXD) and polarized optical microscope (POM). Unlike flexible-chain polymers such as polyethylene, and so on, whose crystallization kinetics are significantly accelerated by shear flow, neat PLA only exhibits an increase in onset crystallization temperature after experiencing a shear rate of 30 s(-1), whereas both the nucleation density and ultimate crystallinity are not changed too much because PLA chains are intrinsically semirigid and have relatively short length. The breaking down of shear-induced nuclei into point-like precursors (or random coil) probably becomes increasingly active after shear stops. Very interestingly, a marked synergistic effect of shear flow and CNTs exists in enhancing crystallization of PLA, leading to a remarkable increase of nucleation density in PLA/CNT nanocomposite. This synergistic effect is ascribed to extra nuclei, which are formed by the anchoring effect of CNTs' surfaces on the shear-induced nuclei and suppressing effect of CNTs on the relaxation of the shear-induced nuclei. Further, this interesting finding was deliberately applied to injection molding, aiming to improve the crystallinity of PLA products. As expected, a remarkable high crystallinity in the injection-molded PLA part has been achieved successfully by the combination of shear flow and CNTs, which offers a new method to fabricate PLA products with high crystallinity for specific applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm3013617 | DOI Listing |
Sci Adv
March 2025
Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Bacterial populations experience chemical gradients in nature. However, most experimental systems either ignore gradients or fail to capture gradients in mechanically relevant contexts. Here, we use microfluidic experiments and biophysical simulations to explore how host-relevant shear flow affects antimicrobial gradients across communities of the highly resistant pathogen .
View Article and Find Full Text PDFCells
March 2025
School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, London SE5 9NU, UK.
Endothelial dysfunction is the main initiating factor in atherosclerosis. Through mechanotransduction, shear stress regulates endothelial cell function in both homeostatic and diseased states. Accumulating evidence reveals that epigenetic changes play critical roles in the etiology of cardiovascular diseases, including atherosclerosis.
View Article and Find Full Text PDFBiotechnol Prog
March 2025
Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA.
The organ transplantation field requires new approaches for replacing and regenerating tissues due to the lack of adequate transplant methods. Three-dimensional (3D) extrusion-based bioprinting is a rapid prototyping approach that can engineer 3D scaffolds for tissue regeneration applications. In this process, 3D printed cell-based constructs, consisting of biomaterials, growth factors, and cells, are formed by the extrusion of bioinks from nozzles.
View Article and Find Full Text PDFCirc Res
March 2025
Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong (M.J., H.D., C.W.L., Y.X., X.Y., Yu Huang).
Background: Atherosclerosis is characterized by the accumulation of fatty and fibrotic plaques, which preferentially develop at curvatures and branches along the arterial trees that are exposed to disturbed flow. However, the mechanisms by which endothelial cells sense disturbed flow are still unclear.
Methods: The partial carotid ligation mouse model was used to investigate disturbed flow-induced atherogenesis.
Front Cell Dev Biol
February 2025
Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
The interaction between integrin αβ and fibronectin enables tumor cell adherence to endothelial layers under diverse hydrodynamic blood flow conditions, particularly in low shear stress regions. Understanding the mechanical binding characteristics between integrin αβ and fibronectin under different hydrodynamic environments can provide insights into tumor cell invasion and proliferation. Here, the adhesive behavior of fibronectin-functionalized microspheres on integrin αβ-coated substrates under various wall fluid shear forces (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!