Mg-doped SnO₂ with an ultrathin TiO₂ coating layer was successfully synthesized through a facile nanoengineering art. Mg-doping and TiO₂-coating constructed functionally multi-interfaced SnO₂ photoanode for blocking charge recombination and enhancing charge transfer in dye-sensitized solar cells (DSC). The designed nanostructure might play a synergistic effect on the reducing recombination and prolonging the lifetime in DSC device. Consequently, a maximum power conversion efficiency of 4.15% was obtained for solar cells fabricated with the SnO₂-based photoelectrode, exhibiting beyond 5-fold improvement in comparison with pure SnO₂ nanomterials photoelectrode DSC (0.85%).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am3018493 | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
A TiO/CdS heterostructure has been widely investigated as a potential photoanode for photoelectrochemical (PEC) water splitting for hydrogen evolution. However, the efficiency and stability still remain challenging due to the sluggish reaction dynamics for water oxidation and easy photocorrosion of CdS. Here we report a ternary TiO/CdS/IrO heterostructure with IrO as a hole transport layer for PEC glycerol oxidation coupled with hydrogen evolution.
View Article and Find Full Text PDFACS Sens
January 2025
College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China.
To advance the biological understanding of heat shock protein (HSP) in different types of cancers, it is crucial to achieve its accurate determination. Herein, a dual-mode self-powered photoelectrochemical (PEC) and colorimetric platform was proposed by integrating enzymatic catalysis and a chemical redox cycling amplification strategy. In this system, ascorbic acid (AA), as the signal reporter for PEC and colorimetric assay, can be regenerated during the tris(2-carboxyethyl) phosphine-mediated chemical redox cycling process.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China.
Cofactors such as nicotinamide adenine dinucleotide (NADH) and its phosphorylated form (NADPH) play a crucial role in natural enzyme-catalyzed reactions for the synthesis of chemicals. However, the stoichiometric supply of NADH for artificial synthetic processes is uneconomical. Here, inspired by the process of cofactor NADPH regeneration in photosystem I (PSI), catalyst-modified photocathodes are constructed on the surface of polythiophene-based semiconductors (PTTH) via self-assembly for photoelectrochemical catalytic NADH regeneration.
View Article and Find Full Text PDFSci Rep
December 2024
Advanced Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
The present study demonstrates the synthesis of compact ZnO layers using CdS sensitized on ZnO as a photoanode with copper sulfide (CuS) and carbon as a counter electrode (CE). In this study, a compact ZnO layer was fabricated using the simple and low-cost successive ionic layer adsorption and reaction (SILAR) method, and CuS CE films were synthesized using the chemical bath deposition method. Various characterizations, such as X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), confirmed the formation of ZnO and CdS sensitizations on the ZnO .
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland.
WO/Ag/TiO composite photoelectrodes were formed via the high-temperature calcination of a WO film, followed by the sputtering of a very thin silver film and deposition of an overlayer of commercial TiO nanoparticles. These synthetic photoanodes were characterized in view of the oxidation of a model organic compound glucose combined with the generation of hydrogen at a platinum cathode. During prolonged photoelectrolysis under simulated solar light, these photoanodes demonstrated high and stable photocurrents of ca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!