Tropical regions are facing increasing atmospheric inputs of nutrients, which will have unknown consequences for the structure and functioning of these systems. Here, we show that Neotropical montane rainforests respond rapidly to moderate additions of N (50 kg ha(-1) yr(-1)) and P (10 kg ha(-1) yr(-1)). Monitoring of nutrient fluxes demonstrated that the majority of added nutrients remained in the system, in either soil or vegetation. N and P additions led to not only an increase in foliar N and P concentrations, but also altered soil microbial biomass, standing fine root biomass, stem growth, and litterfall. The different effects suggest that trees are primarily limited by P, whereas some processes-notably aboveground productivity--are limited by both N and P. Highly variable and partly contrasting responses of different tree species suggest marked changes in species composition and diversity of these forests by nutrient inputs in the long term. The unexpectedly fast response of the ecosystem to moderate nutrient additions suggests high vulnerability of tropical montane forests to the expected increase in nutrient inputs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468540 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0047128 | PLOS |
Nat Commun
January 2025
Department of Agronomy, Iowa State University, Ames, IA, USA.
Fertilizing maize at an optimum nitrogen rate is imperative to maximize productivity and sustainability. Using a combination of long-term (n = 379) and short-term (n = 176) experiments, we show that the economic optimum nitrogen rate for US maize production has increased by 2.7 kg N ha yr from 1991 to 2021 (1.
View Article and Find Full Text PDFFront Plant Sci
December 2024
State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Hangzhou, Zhejiang, China.
Uncovering the response of plant functional types (PFTs) to nutrient limitation caused by atmospheric deposition is critical for assessing the health of terrestrial ecosystems under climate change conditions. However, it remains unclear how atmospheric deposition and underlying ecological factors affect PFTs globally. To address this, we compiled a global dataset of four PFTs, i.
View Article and Find Full Text PDFSci Total Environ
January 2025
College of Geographical Science, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, China.
J Environ Manage
January 2025
Brazilian Biorenewables National Laboratory, National Center for Research in Energy and Materials (LNBR/CNPEM), Rua Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, SP, 13083-100, Brazil; Center for Carbon Research in Tropical Agriculture (CCARBON), University of São Paulo, Piracicaba, SP, 13418-900, Brazil. Electronic address:
Soils under anthropic use in the Amazon region are often associated with soil carbon (C) stock losses. More recently, the restoration of degraded pastures and the introduction of integrated systems have changed this pattern, and soil C accumulation is often observed. This study evaluated an 11-year field experiment to quantify soil C changes and elucidate C stabilization mechanisms in areas under anthropic uses in the southern Amazon of Brazil.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, China; CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China. Electronic address:
Examining whether nitrogen (N) enrichment promotes secondary tree growth in both young (YF) and old-growth forests (OF) is crucial. This will help determine how N addition influences plant carbon sequestration across successional phases in temperate forests. We conducted an eight-year N addition experiment (0, 25, 50, 75 kg N ha yr) in YF and OF in northeast China to investigate the effects of enhanced in situ N deposition on tree growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!