AI Article Synopsis

Article Abstract

Tropical regions are facing increasing atmospheric inputs of nutrients, which will have unknown consequences for the structure and functioning of these systems. Here, we show that Neotropical montane rainforests respond rapidly to moderate additions of N (50 kg ha(-1) yr(-1)) and P (10 kg ha(-1) yr(-1)). Monitoring of nutrient fluxes demonstrated that the majority of added nutrients remained in the system, in either soil or vegetation. N and P additions led to not only an increase in foliar N and P concentrations, but also altered soil microbial biomass, standing fine root biomass, stem growth, and litterfall. The different effects suggest that trees are primarily limited by P, whereas some processes-notably aboveground productivity--are limited by both N and P. Highly variable and partly contrasting responses of different tree species suggest marked changes in species composition and diversity of these forests by nutrient inputs in the long term. The unexpectedly fast response of the ecosystem to moderate nutrient additions suggests high vulnerability of tropical montane forests to the expected increase in nutrient inputs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468540PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0047128PLOS

Publication Analysis

Top Keywords

ha-1 yr-1
8
nutrient inputs
8
nutrient
5
tropical andean
4
andean forests
4
forests highly
4
highly susceptible
4
susceptible nutrient
4
nutrient inputs--rapid
4
inputs--rapid effects
4

Similar Publications

Fertilizing maize at an optimum nitrogen rate is imperative to maximize productivity and sustainability. Using a combination of long-term (n = 379) and short-term (n = 176) experiments, we show that the economic optimum nitrogen rate for US maize production has increased by 2.7 kg N ha yr from 1991 to 2021 (1.

View Article and Find Full Text PDF

A global analysis of plant nutrient limitation affected by atmospheric nitrogen and phosphorous deposition.

Front Plant Sci

December 2024

State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Hangzhou, Zhejiang, China.

Uncovering the response of plant functional types (PFTs) to nutrient limitation caused by atmospheric deposition is critical for assessing the health of terrestrial ecosystems under climate change conditions. However, it remains unclear how atmospheric deposition and underlying ecological factors affect PFTs globally. To address this, we compiled a global dataset of four PFTs, i.

View Article and Find Full Text PDF

Nitrogen-driven shifts in molecular composition of soil dissolved organic matter linked to rare bacterial sub-communities.

Sci Total Environ

January 2025

College of Geographical Science, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, China.

Article Synopsis
  • The study investigates how soil dissolved organic matter (DOM) interacts with bacterial communities, focusing on the impact of nitrogen (N) addition on their dynamics.
  • High-resolution mass spectrometry and sequencing reveal that low N conditions lead to a decrease in carbohydrate compounds in DOM, while higher N levels increase DOM heterogeneity and stability.
  • Rare bacterial sub-communities are more affected by N changes than abundant taxa, highlighting their crucial role in influencing DOM composition and chemical diversity in response to nitrogen enrichment.
View Article and Find Full Text PDF

Well-managed grass is a key strategy for carbon storage and stabilization in anthropized Amazon soils.

J Environ Manage

January 2025

Brazilian Biorenewables National Laboratory, National Center for Research in Energy and Materials (LNBR/CNPEM), Rua Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, SP, 13083-100, Brazil; Center for Carbon Research in Tropical Agriculture (CCARBON), University of São Paulo, Piracicaba, SP, 13418-900, Brazil. Electronic address:

Soils under anthropic use in the Amazon region are often associated with soil carbon (C) stock losses. More recently, the restoration of degraded pastures and the introduction of integrated systems have changed this pattern, and soil C accumulation is often observed. This study evaluated an 11-year field experiment to quantify soil C changes and elucidate C stabilization mechanisms in areas under anthropic uses in the southern Amazon of Brazil.

View Article and Find Full Text PDF

Nitrogen addition accelerates aboveground biomass sequestration in old-growth forests by stimulating ectomycorrhizal tree growth.

J Environ Manage

January 2025

Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, China; CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China. Electronic address:

Examining whether nitrogen (N) enrichment promotes secondary tree growth in both young (YF) and old-growth forests (OF) is crucial. This will help determine how N addition influences plant carbon sequestration across successional phases in temperate forests. We conducted an eight-year N addition experiment (0, 25, 50, 75 kg N ha yr) in YF and OF in northeast China to investigate the effects of enhanced in situ N deposition on tree growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!