The ranking of scores of individual chemicals within a large screening library is a crucial step in virtual screening (VS) for drug discovery. Previous studies showed that the quality of protein-ligand recognition can be improved using spectrum properties and the shape of the binding energy landscape. Here, we investigate whether the energy gap, defined as the difference between the lowest energy pose generated by a docking experiment and the average energy of all other generated poses and inferred to be a measure of the binding energy landscape sharpness, can improve the separation power between true binders and decoys with respect to the use of the best docking score. We performed retrospective single- and multiple-receptor conformation VS experiments in a diverse benchmark of 40 domains from 38 therapeutically relevant protein targets. Also, we tested the performance of the energy gap on 36 protein targets from the Directory of Useful Decoys (DUD). The results indicate that the energy gap outperforms the best docking score in its ability to discriminate between true binders and decoys, and true binders tend to have larger energy gaps than decoys. Furthermore, we used the energy gap as a descriptor to measure the height of the native binding phase and obtained a significant increase in the success rate of near native binding pose identification when the ligand binding conformations within the boundaries of the native binding phase were considered. The performance of the energy gap was also evaluated on an independent test case of VS-identified PKR-like ER-localized eIF2α kinase (PERK) inhibitors. We found that the energy gap was superior to the best docking score in its ability to more highly rank active compounds from inactive ones. These results suggest that the energy gap of the protein-ligand binding energy landscape is a valuable descriptor for use in VS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468575 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0046532 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!