Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Type VI Secretion Systems (T6SSs) have been identified in numerous gram-negative pathogens, but the lack of a natural host infection model has limited analysis of T6SS contributions to infection and pathogenesis. Here, we describe disruption of a gene within locus encoding a putative T6SS in Bordetella bronchiseptica strain RB50, a respiratory pathogen that circulates in a broad range of mammals, including humans, domestic animals, and mice. The 26 gene locus encoding the B. bronchiseptica T6SS contains apparent orthologs to all known core genes and possesses thirteen novel genes. By generating an in frame deletion of clpV, which encodes a putative ATPase required for some T6SS-dependent protein secretion, we observe that ClpV contributes to in vitro macrophage cytotoxicity while inducing several eukaryotic proteins associated with apoptosis. Additionally, ClpV is required for induction of IL-1β, IL-6, IL-17, and IL-10 production in J774 macrophages infected with RB50. During infections in wild type mice, we determined that ClpV contributes to altered cytokine production, increased pathology, delayed lower respiratory tract clearance, and long term nasal cavity persistence. Together, these results reveal a natural host infection system in which to interrogate T6SS contributions to immunomodulation and pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3470547 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0045892 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!