A novel conjugated asymmetric donor-acceptor (CADA) strategy for preventing the redshift in photoluminescence, as well as preserving the merits of donor-acceptor architectures, was proposed and demonstrated for two triazine derivatives, which showed highly efficient, narrow, and blueshifted ultraviolet light emission in solid films along with special aggregation-induced emission behavior. A mechanism of aggregation-induced locally excited-state emission by suppressing the twisted intramolecular charge-transfer emission for the spectacular optoelectronic phenomena of these CADA molecules was suggested on the basis of both experimental measurements and theoretical calculations. By taking advantage of this special CADA architecture, fluorescent probes based on aggregates of conjugated asymmetric triazines in THF/water for the detection of explosives show superamplified detection of picric acid with high quenching constants (>1.0 × 10(7) M(-1)) and a low detection limit of 15 ppb.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201202337DOI Listing

Publication Analysis

Top Keywords

conjugated asymmetric
12
aggregation-induced emission
8
asymmetric triazines
8
superamplified detection
8
detection explosives
8
emission
5
exceptional blueshifted
4
blueshifted enhanced
4
enhanced aggregation-induced
4
emission conjugated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!