Cell therapy is the most promising therapy for end-stage liver diseases (ESLDs). Fetal liver stem/progenitor cells (FLSPCs) have the advantages of a high survival rate, high proliferation, small volume, and high safety, which make them one of the ideal cells for stem cell therapy for liver diseases. During the early phase of our study, we applied a three-step separation method to enrich FLSPCs and obtained a separation efficiency that was similar to the flow cell-sorting method. Additionally, using a fulminant hepatic failure rat model, we demonstrated that FLSPCs can contribute to the recovery of hepatic morphogenesis and function. However, two problems remain to be resolved to explore the therapeutic potential of FLSPCs. First, how can FLSPCs be induced to accurately differentiate into hepatocytes and cholangiocytes? Second, how do FLSPCs maintain self-renewal? The Notch signaling plays a critical role in regulating the differentiation and self-renewal of many types of stem cells. Additionally, our previous findings have shown that the Notch signaling plays an important role in FLSPC differentiation into hepatocytes. Therefore, we hypothesized that the Notch signaling may be involved in the differentiation and self-renewal of FLSPCs. We began a study on the regulatory effects and relative molecular mechanisms of the Notch signaling on FLSPCs and found the corresponding interfering target, which may become an index for the clinical application of FLSPCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arcmed.2012.09.004 | DOI Listing |
Med Res Rev
March 2025
Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka, Bangladesh.
The development of standard drugs for some unusual cancers, including estrogen-nonresponsive breast cancer, is somewhat difficult within a very short time. So, considering the current situation, phytoestrogen may be a potential candidate for unraveling chemotherapeutics agents. The reason for this review article is to manifest overall information regarding the effects of phytoestrogen on triple-negative breast cancer (TNBC), along with its related cellular and molecular pathways in different TNBC models.
View Article and Find Full Text PDFFront Vet Sci
February 2025
Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
Secondary hair follicles (SHFs) in cashmere goats produce high-value cashmere fibers, which cyclic regulation is critical for optimizing cashmere yield and quality. This study explores the phenotypic changes and differential protein expression profiles involved in the telogen-to-anagen transition of SHFs. Through histological observations, proteomic analyses, and immunohistochemical validation, we identified key molecular features and regulatory pathways underlying SHF cyclic renewal.
View Article and Find Full Text PDFBMC Musculoskelet Disord
March 2025
Department of Neurosurgery, Ningbo Key Laboratory of Neurological Diseases and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, China.
Fractures will impair or disrupt angiogenesis, resulting in delayed union or non-union. Exploring angiogenic signaling molecules and related pathways can promote fracture healing. In this study, the roles of different endothelial cell (EC) subsets in fracture healing were observed using single-cell RNA sequencing (scRNA-seq).
View Article and Find Full Text PDFNat Commun
March 2025
Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
The vertebrate segmentation clock drives periodic somite segmentation during embryonic development. Her1 and Her7 clock proteins generate oscillatory expression of their own genes as well as that of deltaC in zebrafish. In turn, DeltaC and DeltaD ligands activate Notch signaling, which then activates transcription of clock genes in neighboring cells.
View Article and Find Full Text PDFJ Adv Res
March 2025
Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. Electronic address:
Introduction: Neutrophils are initial responders in inflammation and contribute to non-alcoholic fatty liver disease (NAFLD) progression to steatohepatitis (NASH). Neutrophil extracellular traps (NETs) are implicated in liver injury, yet their precise mechanisms in NASH progression remains unclear.
Objectives: This study investigates how NETs drive NASH progression by disrupting hepatocyte lipotoxicity and explore the regulatory mechanism of NETs formation and its downstream effects on liver pathology.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!