The effect of lysozyme amyloid fibrils on cytochrome c-lipid interactions.

Chem Phys Lipids

Department of Nuclear and Medical Physics, V.N. Karazin Kharkov National University, 4 Svobody Sq., Kharkov 61072, Ukraine.

Published: October 2012

Protein polymerization into ordered fibrillar structures (amyloid fibrils) is currently associated with a range of pathological conditions. Recent studies clearly indicate that amyloid cytotoxicity is provoked by a continuum of cross-β-sheet aggregates including mature fibrils. In view of the possible diversity of cytotoxicity mechanisms, the present study addressed the question of whether protein conversion into amyloid fibrils can modify its competitive membrane adsorption behavior. Using a combination of resonance energy transfer, dynamic light scattering and fluorescence quenching techniques, the competitive binding of either monomeric or polymerized lysozyme, and cytochrome c to the model lipid membranes composed of phosphatidylcholine mixtures with varying proportions of phosphatidylglycerol, phosphatidylserine or cardiolipin has been studied. The ability of fibrillar lysozyme to induce dissociation of cytochrome c from the membrane binding sites proved to be markedly stronger than that of its monomeric counterpart, with desorption process displaying cooperativity features upon increasing the charge of lipid bilayer. The decreased efficiency of tryptophan fluorescence quenching by acrylamide and short-wavelength shift of emission maximum observed upon membrane binding of lysozyme fibrils were rationalized in terms of fluorophore transfer into interfacial bilayer region. It is hypothesized that electrostatic interactions play predominant role in determining the lipid-associating and competitive abilities of fibrillar lysozyme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2012.10.001DOI Listing

Publication Analysis

Top Keywords

amyloid fibrils
12
fluorescence quenching
8
fibrillar lysozyme
8
membrane binding
8
lysozyme
5
fibrils
5
lysozyme amyloid
4
fibrils cytochrome
4
cytochrome c-lipid
4
c-lipid interactions
4

Similar Publications

The largest risk factor for dementia is age. Heterochronic blood exchange studies have uncovered age-related blood factors that demonstrate 'pro-aging' or 'pro-youthful' effects on the mouse brain. The clinical relevance and combined effects of these factors for humans is unclear.

View Article and Find Full Text PDF

Velvet bean is a native Indonesian legume containing L-dopa, yet it remains underutilized. The aim of this study was to analyze the effects of different types of tempe (soybean, velvet bean, and their combination) on cognitive function, brain histology, dopamine levels, and serum β-amyloid in rats, as well as to identify the parameters most influencing cognitive function, including brain mass and volume, hippocampal neuron count, and dopamine and β-amyloid levels. An experimental study was conducted using a completely randomized design with one factor: the protein source of diet.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most frequent form of dementia and represents an increasing global burden, particularly in countries like Indonesia, where the population has begun to age significantly. Current medications, including cholinesterase inhibitors and NMDA receptor antagonists, have modest effects on clinical symptoms in the early to middle stages, but there is no curative treatment available so far despite progress. Activating or repressing epigenetic modifications, including DNA methylation, histone modification and microRNA regulation, appears to play an important role in AD development.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a type of neurodegenerative illness in which β-amyloid (Aβ) and tau protein accumulate in neurons in the form of tangles. The pathophysiological pathway of AD consists of Aβ-amyloid peptides, tau proteins, and oxidative stress in neurons and increased neuro-inflammatory response. Food and Drug Administration in the United States has authorized various drugs for the effective treatment of AD, which include galantamine, rivastigmine, donepezil, memantine, sodium oligomannate, lecanemab, and aducanumab.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!