In this study, we used human amniotic membrane (AM) to prepare a dermal scaffold with intact basement membrane (BM) and good biostability for quick expansion and transplantation of epidermal keratinocytes (EKs). Fresh AM was treated by repeated freeze-thaw cycles and DNase digestion. This new method was able to cleanse the cell components effectively and retain the BM structure with continuous distributions of laminin, collagen IV, VI, and VII. Subsequently, the acellular amniotic membrane (AAM) was cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) for 5 min, 30 min, and 6 h. With the time of cross-linking prolonging, the mechanical strength and biostability of AAM increased gradually, while its cytotoxicity to EKs also increased. The 5-min cross-linked AAM (5min-AAM) had no significant cytotoxicity with good histocompatibility. The relative cell viability of EKs seeded on the 5min-AAM surface was 367 ± 33% and 631 ± 43% at 7 and 14 days of culture, respectively, both higher than 294 ± 30% and 503 ± 41% of the conventional cell culture dish (CCD) group, and the proportion of P63-positive cells was significantly higher than that of the CCD group on day 7 (54.32 ± 4.27% vs. 33.32 ± 3.18%, p < 0.05). When the 5min-AAM loaded with EKs (EK-AAM) was grafted onto full-thickness skin defects in nude mice, the cells survived well and formed an epidermis similar to normal skin. The new epidermis was thicker, and reconstruction of the dermal structure was good with an intact BM. Four weeks after transplantation, the wound contraction rate in the EK-AAM group was 43.09 ± 7.05%, significantly lower than that in the EK sheet group (57.49 ± 5.93%) and control group (69.94 ± 9.47%) (p < 0.05). In conclusion, repeated freeze-thaw treatment with appropriate EDC cross-linking offers AAM an intact BM structure with good operability and biostability. It may prove to be an ideal dermal scaffold to promote expansion of EKs in vitro and be transplanted for reconstruction of the dermal structure.

Download full-text PDF

Source
http://dx.doi.org/10.3727/096368912X657945DOI Listing

Publication Analysis

Top Keywords

amniotic membrane
12
dermal scaffold
8
repeated freeze-thaw
8
ccd group
8
reconstruction dermal
8
dermal structure
8
structure good
8
dermal
5
eks
5
group
5

Similar Publications

In clinical practice, there is a demand for innovative wound healing methods to tackle full thickness skin injuries, especially in those with diabetes. In this study, we examined if collagen-based hydrogel from amniotic membrane (CHAM) loaded with quercetin could enhance healing in diabetic rats. Sixty diabetic rats were randomly divided into the control group, CHAM group, quercetin group, and CHAM+Quercetin group.

View Article and Find Full Text PDF

A woman in her 50s underwent simple limbal epithelial transplantation (SLET) in the left eye for chemical injury with total limbal stem cell deficiency. A seroma, a hitherto unreported complication of the procedure was noted on the 10th postoperative day. It was associated with an accumulation of inflammatory cells and exudates in the inferior part of the amniotic membrane resembling a hypopyon.

View Article and Find Full Text PDF

Placental Membrane Transplantation: Can It Be A Solution For Tissue Defect Repair In Giant Omphaloceles.

Transplant Proc

January 2025

Department of Perinatology, Istanbul Zeynep Kamil Maternity and Children's Diseases Health Training and Research Center, University of Health Sciences, Istanbul, Turkey. Electronic address:

Objectives: This study aimed to evaluate the effect of placental membrane covering of the omphalocele sac on the healing of giant omphaloceles requiring silo repair that could not be treated primarily.

Methods: This prospective study was performed between October 2021 and October 2023 with the approval of our hospital's ethics committee. All pregnant women diagnosed with prenatal giant omphalocele were informed that their own placenta could be used for omphalocele repair if necessary, and their consent was obtained.

View Article and Find Full Text PDF

In the quest for an ideal wound healing material, human amniotic membrane (AM), tilapia skin collagen (TSC), and Centella asiatica (CA) have been studied separately for their healing potential. In this study, we formulated AM, TSC, and CA gel and studied their competency and wound healing efficacy in vivo. Gel was formulated using AM, TSC, CA, Carbopol 934, acrylic acid, glycerine, and triethanolamine and physicochemical properties e.

View Article and Find Full Text PDF

Alginate-Based Hydrogels with Amniotic Membrane Stem Cells for Wound Dressing Application.

Stem Cells Cloning

January 2025

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.

Objective: Chronic wounds are a common clinical problem that necessitate the exploration of novel regenerative therapies. We report a method to investigate the in vitro wound healing capacity of an innovative biomaterial, which is based on amniotic membrane-derived stem cells (AMSCs) embedded in an alginate hydrogel matrix. The aim of this study was to prepare an sodium alginate-based hydrogel, cross-linked calcium chloride (CaCl with the active ingredient AMSC (AMSC/Alg-H) and to evaluate its in vitro effectiveness for wound closure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!