A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Auditory streaming by phase relations between components of harmonic complexes: a comparative study of human subjects and bird forebrain neurons. | LitMetric

Auditory streaming describes a percept in which a sequential series of sounds either is segregated into different streams or is integrated into one stream based on differences in their spectral or temporal characteristics. This phenomenon has been analyzed in human subjects (psychophysics) and European starlings (neurophysiology), presenting harmonic complex (HC) stimuli with different phase relations between their frequency components. Such stimuli allow evaluating streaming by temporal cues, as these stimuli only vary in the temporal waveform but have identical amplitude spectra. The present study applied the commonly used ABA- paradigm (van Noorden, 1975) and matched stimulus sets in psychophysics and neurophysiology to evaluate the effects of fundamental frequency (f₀), frequency range (f(LowCutoff)), tone duration (TD), and tone repetition time (TRT) on streaming by phase relations of the HC stimuli. By comparing the percept of humans with rate or temporal responses of avian forebrain neurons, a neuronal correlate of perceptual streaming of HC stimuli is described. The differences in the pattern of the neurons' spike rate responses provide for a better explanation for the percept observed in humans than the differences in the temporal responses (i.e., the representation of the periodicity in the timing of the action potentials). Especially for HC stimuli with a short 40-ms duration, the differences in the pattern of the neurons' temporal responses failed to represent the patterns of human perception, whereas the neurons' rate responses showed a good match. These results suggest that differential rate responses are a better predictor for auditory streaming by phase relations than temporal responses.

Download full-text PDF

Source
http://dx.doi.org/10.1037/a0030249DOI Listing

Publication Analysis

Top Keywords

phase relations
16
temporal responses
16
auditory streaming
12
streaming phase
12
rate responses
12
human subjects
8
forebrain neurons
8
differences pattern
8
pattern neurons'
8
temporal
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!