Core peptide is a hydrophobic peptide, the sequence of which is derived from the T-cell antigen receptor alpha-chain transmembrane region. Previous studies have shown that core peptide can inhibit T-cell-mediated immune responses both in vitro and in vivo. Here, we report the role each constituent amino acid plays within core peptide using an alanine scan and the amino acid effect on function using a biological antigen presentation assay. The biophysical behaviour of these analogues in model membranes was analysed using surface plasmon resonance studies and then binding correlated with T-cell function. Removal of any single hydrophobic amino acid between the two charged amino acids in core peptide (R, K) resulted in lower binding. Changing the overall net charge of core peptide, by removing either of the positively charged residues (R or K), had varying effects on peptide binding and IL-2 production. There was a direct correlation (ρ = 0.718) between peptide binding to model membranes and peptide ability to inhibit IL-2. Except for IL-2 inhibition, production of other T-cell cytokines such as GM-CSF, IFN-γ, IL-1α, IL-4, IL-5, IL-6, IL-10, IL-17 and T-cell antigen receptor alpha-chain was not detected using a fluorescent bead immunoassay. This study provides important structure-function relationships essential for further drug design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cbdd.12080 | DOI Listing |
Immunol Rev
January 2025
Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA.
αβ T cell receptor (TCR) recognition of peptide-MHC complexes lies at the core of adaptive immunity, balancing specificity and cross-reactivity to facilitate effective antigen discrimination. Early structural studies established basic frameworks helpful for understanding and contextualizing TCR recognition and features such as peptide specificity and MHC restriction. However, the growing TCR structural database and studies launched from structural work continue to reveal exceptions to common assumptions and simplifications derived from earlier work.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, CRI Center for Chemical Proteomics, Seoul National University, Seoul 08826, Korea.
We developed a design strategy focusing on pivotal secondary structural motifs-α-helix, β-strand, and β-turn-critical for PPI recognition, using a common core skeleton. The resulting peptide-inspired pyrimidodiazepine scaffolds were further subjected to comprehensive phenotypic screening to evaluate their efficacy. Our strategy offers a transformative approach to developing small-molecule PPI modulators with broad therapeutic potential.
View Article and Find Full Text PDFJTO Clin Res Rep
January 2025
Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York City, NY, USA.
Introduction: WT1 often presents on the surface of diffuse pleural mesotheliomas (DPMs) and is an ideal therapeutic target. Galinpepimut-S (GPS), a tetravalent, non-human leukocyte antigen-restricted, heteroclitic WT1-specific peptide vaccine was safe and effective in early phase clinical trials and upregulates T-cell suppressive programmed death-ligand 1 in the tumor microenvironment of other malignancies. A randomized phase 2 study of adjuvant GPS in patients with DPM trended toward improved median overall survival.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)--poly(methacrylic acid) (PEO--PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms).
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Chemistry, Rice University, Houston, Texas 77005, United States.
In this work, we investigate the pH-responsive behavior of multidomain peptide (MDP) hydrogels containing histidine. Small-angle X-ray scattering confirmed that MDP nanofibers sequester nonpolar residues into a hydrophobic core surrounded by a shell of hydrophilic residues. MDPs with histidine on the hydrophilic face formed nanofibers at all pH values tested, but the morphology of the fibers was influenced by the protonation state and the location of histidine in the MDP sequence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!