Origin of the conformational heterogeneity of cardiolipin-bound cytochrome C.

J Am Chem Soc

Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States.

Published: November 2012

Interactions of cytochrome c (cyt c) with cardiolipin (CL) partially unfold the protein, activating its peroxidase function, a critical event in the execution of apoptosis. However, structural features of the altered protein species in the heterogeneous ensemble are difficult to probe with ensemble averaging. Analyses of the dye-to-heme distance distributions P(r) from time-resolved FRET (TR-FRET) have uncovered two distinct types of CL-bound cyt c conformations, extended and compact. We have combined TR-FRET, fluorescence correlation spectroscopy (FCS), and biolayer interferometry to develop a systematic understanding of the functional partitioning between the two conformations. The two subpopulations are in equilibrium with each other, with a submillisecond rate of conformational exchange reflecting the protein folding into a compact non-native state, as well as protein interactions with the lipid surface. Electrostatic interactions with the negatively charged lipid surface that correlate with physiologically relevant changes in CL concentrations strongly affect the kinetics of cyt c binding and conformational exchange. A predominantly peripheral binding mechanism, rather than deep protein insertion into the membrane, provides a rationale for the general denaturing effect of the CL surface and the large-scale protein unfolding. These findings closely relate to cyt c folding dynamics and suggest a general strategy for extending the time window in monitoring the kinetics of folding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507619PMC
http://dx.doi.org/10.1021/ja307426kDOI Listing

Publication Analysis

Top Keywords

conformational exchange
8
lipid surface
8
protein
6
origin conformational
4
conformational heterogeneity
4
heterogeneity cardiolipin-bound
4
cardiolipin-bound cytochrome
4
cytochrome interactions
4
interactions cytochrome
4
cyt
4

Similar Publications

The small GTPase MRAS is a broken switch.

Nat Commun

January 2025

Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada.

Intense research on founding members of the RAS superfamily has defined our understanding of these critical signalling proteins, leading to the premise that small GTPases function as molecular switches dependent on differential nucleotide loading. The closest homologs of H/K/NRAS are the three-member RRAS family, and interest in the MRAS GTPase as a regulator of MAPK activity has recently intensified. We show here that MRAS does not function as a classical switch and is unable to exchange GDP-to-GTP in solution or when tethered to a lipid bilayer.

View Article and Find Full Text PDF

Macrocyclization or stapling is an important strategy for increasing the conformational stability and target-binding affinity of peptides and proteins, especially in therapeutic contexts. Atomistic simulations of such stapled peptides and proteins could help rationalize existing experimental data and provide predictive tools for the design of new stapled peptides and proteins. Standard approaches exist for incorporating nonstandard amino acids and functional groups into the force fields required for MD simulations and have been used in the context of stapling for more than a decade.

View Article and Find Full Text PDF

Class I major histocompatibility complex (MHC-I) proteins play a pivotal role in adaptive immunity by displaying epitopic peptides to CD8+ T cells. The chaperones tapasin and TAPBPR promote the selection of immunogenic antigens from a large pool of intracellular peptides. Interactions of chaperoned MHC-I molecules with incoming peptides are transient in nature, and as a result, the precise antigen proofreading mechanism remains elusive.

View Article and Find Full Text PDF

While the conformational ensembles of disordered peptides and peptidomimetics are complex and challenging to characterize, they are a critical component in the paradigm connecting macromolecule sequence, structure, and function. In molecules that do not adopt a single predominant conformation, the conformational ensemble contains rich structural information that, if accessible, can provide a fundamental understanding related to desirable functions such as cell penetration of a therapeutic or the generation of tunable enzyme-mimetic architecture. To address the fundamental challenge of describing broad conformational ensembles, we developed a model system of peptidomimetics comprised of polar glycine and hydrophobic -butylglycine to characterize using a suite of analytical techniques.

View Article and Find Full Text PDF

The heterodimeric Rab3GAP complex is a guanine nucleotide exchange factor (GEF) for the Rab18 GTPase that regulates lipid droplet metabolism, ER-to-Golgi trafficking, secretion, and autophagy. Why both subunits of Rab3GAP are required for Rab18 GEF activity and the molecular basis of how Rab3GAP engages and activates its cognate substrate are unknown. Here we show that human Rab3GAP is conformationally flexible and potentially autoinhibited by the C-terminal domain of its Rab3GAP2 subunit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!