Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent events in the U-2 and F-22 fleets have challenged aeromedical experts, highlighting the need for better in-flight aircrew physiologic and cognitive monitoring capability. Existing aerospace medicine risk assessment tools, while necessary, are no longer sufficient to affect positive safety changes given the evolving nature of the aerospace environment. Cognition and its sub-elements are now primary measures for the "Fit to Fly" decision. We must investigate practical methodologies for determining dynamic aircrew physiologic and cognitive function preflight (selection, retention) and in-flight (selection, retention, performance enhancement). In 2010, a panel of aeromedical experts met to address current paradigms and suggest possible solutions. This commentary briefly summarizes panel findings and recommendations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3357/asem.3406.2012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!