Core-shell hydrophilic superparamagnetic iron oxide (SPIO) nanoparticles, surface functionalized with either terephthalic acid or 2-amino terephthalic acid, showed large negative MRI contrast ability, validating the advantage of using low molecular weight and π-conjugated canopies for engineering functional nanostructures with superior performances.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cc35515aDOI Listing

Publication Analysis

Top Keywords

superparamagnetic iron
8
iron oxide
8
mri contrast
8
terephthalic acid
8
surface design
4
design core-shell
4
core-shell superparamagnetic
4
oxide nanoparticles
4
nanoparticles drives
4
drives record
4

Similar Publications

Recent years have witnessed an intense effort to unravel magnetic field effects in electrocatalysis, as they can enhance the performance of common electrocatalysts. Both experimental and theoretical studies have shown that magnetic fields may affect, among others, the macroscopic spin-orbital ordering, charge transport, bubble release, and electron transfer kinetics. This paper highlights Electrochemical Impedance Spectroscopy (EIS) as a tool to analyze and separate the effects of magnetic field on both the oxygen reduction and evolution reactions at cobalt iron oxide electrodes.

View Article and Find Full Text PDF

Computational modeling of superparamagnetic nanoparticle-based (affinity) diagnostics.

Front Bioeng Biotechnol

December 2024

Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.

Introduction: Magnetic nanoparticles (MNPs), particularly iron oxide nanoparticles (IONPs), are renowned for their superparamagnetic behavior, allowing precise control under external magnetic fields. This characteristic makes them ideal for biomedical applications, including diagnostics and drug delivery. Superparamagnetic IONPs, which exhibit magnetization only in the presence of an external field, can be functionalized with ligands for targeted affinity diagnostics.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) excels at detecting quantitative changes in microvascular parameters such as cerebral blood volume, cerebral blood flow, and vessel size index (VSI), which are essential for diagnosing and monitoring cerebrovascular diseases. Absolute VSI estimation, often utilizing superparamagnetic iron oxide nanoparticles as contrast agents, relies on measuring transverse relaxation rates (∆R and ∆R). This study systematically investigates the spatial resolution dependence of VSI using Monte Carlo simulations and in vivo rat brain MRI experiments.

View Article and Find Full Text PDF

Objectives: Immune checkpoint inhibitors (ICIs) have demonstrated potential in inhibiting the growth of malignant pleural mesothelioma (MPM), and their efficacy is associated with the expression of programmed death-ligand 1(PD-L1). This study evaluated a PD-L1-targeted nanoprobe for detecting PD-L1 expression in a nude mouse model of malignant pleural mesothelioma (MPM).

Methods: A PD-L1-binding peptide (WL-12) was conjugated with superparamagnetic iron oxide nanoparticles (SPIONs) to create the nanoprobe WL-12@Fe₃O₄.

View Article and Find Full Text PDF

Background: Superparamagnetic iron oxide nanoparticles (SPIO) are emerging as a viable alternative to technetium and blue dye. Our study was designed to evaluate the correlation between SPIO dose, injection site, and timing with sentinel lymph node (SLN) detection and iron content in retrieved SLNs.

Methods: This study combined individual patient data from three Dutch and five Swedish studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!