Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Context: To understand the effect of masticatory and parafunctional forces on the integrity of the prosthesis and the underlying cement layer.
Aims: The purpose of this study was to evaluate the stress pattern in the cement layer and the fixed prosthesis, on subjecting a three-dimensional finite element model to simulated occlusal loading.
Materials And Methods: Three-dimensional finite element model was simulated to replace missing mandibular first molar with second premolar and second molar as abutments. The model was subjected to a range of occlusal loads (20, 30, 40 MPa) in two different directions - vertical and 30° to the vertical. The cements (zinc phosphate, polycarboxylate, glass ionomer, and composite) were modeled with two cement thicknesses - 25 and 100 μm. Stresses were determined in certain reference points in fixed prosthesis and the cement layer.
Statistical Analysis Used: The stress values are mathematic calculations without variance; hence, statistical analysis is not routinely required.
Results: Stress levels were calculated according to Von Mises criteria for each node. Maximum stresses were recorded at the occlusal surface, axio-gingival corners, followed by axial wall. The stresses were greater with lateral load and with 100-μm cement thickness. Results revealed higher stresses for zinc phosphate cement, followed by composites.
Conclusions: The thinner cement interfaces favor the success of the prosthesis. The stresses in the prosthesis suggest rounding of axio-gingival corners and a well-established finish line as important factors in maintaining the integrity of the prosthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3467887 | PMC |
http://dx.doi.org/10.4103/0975-7406.100291 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!