Evaluation of the comprehensiveness and reliability of the chromium composition of foods in the literature ().

J Food Compost Anal

Nutrition Coordinating Center, University of Minnesota, 1300 Second Street Suite 300, Minneapolis, MN 55454, United States.

Published: December 2011

In the early 1960s, trivalent chromium Cr(3+) became recognized as an essential trace element due to its potential metabolic and cardiovascular benefits. No comprehensive chromium database currently exists; thus a thorough review of the literature was conducted to examine the availability and reliability of chromium data for foods. A number of key issues were identified that challenge the feasibility of adding chromium to a food and nutrient database. Foremost, dietary chromium data reported in the literature prior to 1980 cannot be relied on because of problematic analytical issues before that time. Next, paucity of data emerged as an issue that could impede database completeness. Finally, large variation in reported chromium content of foods may render disputable representative chromium values. This variation has been speculated to originate from differences in growing and particularly processing foods. Furthermore, contamination of chromium from laboratory equipment and/or materials is possible and also believed to contribute to the variation observed in reported values. As a result, database developers must carefully consider the availability and reliability of information on the chromium composition of foods when deciding whether to incorporate chromium into or exclude it from a nutrient database.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3467697PMC
http://dx.doi.org/10.1016/j.jfca.2011.04.006DOI Listing

Publication Analysis

Top Keywords

reliability chromium
12
chromium
11
chromium composition
8
composition foods
8
availability reliability
8
chromium data
8
nutrient database
8
foods
5
database
5
evaluation comprehensiveness
4

Similar Publications

The Nozaki-Hiyama-Kishi reaction offers effective and reliable strategies for the preparation of alcohols via carbon-carbon bond formation. Typical methods usually require stoichiometric amounts of chromium salts, co-transition metals, and auxiliary reagents, which limits their practical application in industrial chemistry. To mitigate these limitations, substantial efforts have been made to develop chromium-catalytic approaches.

View Article and Find Full Text PDF

Liquid crystal sensor for Cr(III)-citrate detection via interfacial coagulation.

Anal Chim Acta

February 2025

Department of Chemistry, Tamkang University, New Taipei City, 25137, Taiwan. Electronic address:

Background: Trivalent chromium (Cr(III)) and its highly soluble carboxyl complexes, often discharged into the environment by industries such as electroplating, leather tanning, and textile manufacturing, present severe risks to human health and ecosystems due to their high toxicity. These compounds are notoriously difficult to detect and remove during wastewater treatment, as they can persist in aqueous environments. Consequently, there is a pressing need for the development of simple, cost-effective, and reliable methods for their detection, which can improve monitoring, facilitate timely interventions, and enhance environmental protection efforts.

View Article and Find Full Text PDF

Contaminants are a major cause of seafood export rejections in foreign markets and have significantly impacted consumer health. This investigation addresses the issues of metal contamination and biochemical markers in Litopenaeus vannamei from East Midnapore, West Bengal, India. The analyzed metals included vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo), silver (Ag), gallium (Ga), germanium (Ge), arsenic (As), selenium (Se), strontium (Sr), tin (Sn), cadmium (Cd), mercury (Hg), and lead (Pb), using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

View Article and Find Full Text PDF

Water contaminated with chromium (Cr) poses significant risks to public health and the environment, necessitating reliable detection techniques. This review study uniquely provides a comprehensive analysis of optical methods for detecting Cr pollution in water, focusing on both reagent-based and reagentless approaches, as well as various sensing platforms. Unlike existing reviews that primarily focus on electrochemical and colorimetric/fluorimetric methods, this work highlights the untapped potential of optical technologies, such as colorimetry, SPR, UV-Vis spectroscopy, and more, in detecting distinct Cr species, including reagent and reagentless based approaches.

View Article and Find Full Text PDF

Laser-induced breakdown spectroscopy (LIBS) is a rapidly evolving in-situ multi-element analysis technique that has significantly advanced the field of liquid analysis. This study employs a femtosecond laser for quantitative analysis of heavy metals in flowing liquids, exploring its detection sensitivity and accuracy. Femtosecond pulsed laser excitation of water in a dynamic environment generates plasma while effectively preventing liquid splashing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!