For health scientists, knowledge translation refers to the process of facilitating uptake of knowledge into clinical practice or decision making. Since high-quality clinical research that is not applied cannot improve outcomes, knowledge translation is critical for realizing the value and potential for all types of health research. Knowledge translation is particularly relevant for areas within health care where gaps in care are known to exist, which is the case for some areas of management for people with chronic kidney disease (CKD), including assessment of proteinuria. Given that proteinuria is a key marker of cardiovascular and renal risk, forthcoming international practice guidelines will recommend including proteinuria within staging systems for CKD. While this revised staging system will facilitate identification of patients at higher risk for progression of CKD and mortality who benefit from intervention, strategies to ensure its appropriate uptake will be particularly important. This article describes key elements of effective knowledge translation strategies based on the knowledge-to-action cycle framework and describes options for effective knowledge translation interventions related to the new CKD guidelines, focusing on recommendations related to assessment for proteinuria specifically. The article also presents findings from a multidisciplinary meeting aimed at developing knowledge translation intervention strategies, with input from key stakeholders (researchers, knowledge users, decision makers and collaborators), to facilitate implementation of this guideline. These considerations are relevant for dissemination and implementation of guidelines on other topics and in other clinical settings.

Download full-text PDF

Source
http://dx.doi.org/10.5301/jn.5000226DOI Listing

Publication Analysis

Top Keywords

knowledge translation
28
knowledge
9
identification patients
8
assessment proteinuria
8
intervention strategies
8
effective knowledge
8
translation
6
proteinuria
5
translation nephrologists
4
strategies
4

Similar Publications

Catalytic-independent functions of the Integrator-PP2A complex (INTAC) confer sensitivity to BET inhibition.

Nat Chem Biol

January 2025

Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.

Chromatin and transcription regulators are critical to defining cell identity through shaping epigenetic and transcriptional landscapes, with their misregulation being closely linked to oncogenesis. Pharmacologically targeting these regulators, particularly the transcription-activating BET proteins, has emerged as a promising approach in cancer therapy, yet intrinsic or acquired resistance frequently occurs, with poorly understood mechanisms. Here, using genome-wide CRISPR screens, we find that BET inhibitor efficacy in mediating transcriptional silencing and growth inhibition depends on the auxiliary/arm/tail module of the Integrator-PP2A complex (INTAC), a global regulator of RNA polymerase II pause-release dynamics.

View Article and Find Full Text PDF

Massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS).

Nat Commun

January 2025

School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.

Chip scale DNA synthesis offers a high-throughput and cost-effective method for large-scale DNA-based information storage. Nevertheless, unbiased information retrieval from low-copy-number sequences remains a barricade that largely arises from the indispensable DNA amplification. Here, we devise a simulation-guided quantitative primer-template hybridization strategy to realize massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS).

View Article and Find Full Text PDF

DNA replication stress underpins the vulnerability to oxidative phosphorylation inhibition in colorectal cancer.

Cell Death Dis

January 2025

Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.

Mitochondrial oxidative phosphorylation (OXPHOS) is a therapeutic vulnerability in glycolysis-deficient cancers. Here we show that inhibiting OXPHOS similarly suppresses the proliferation and tumorigenicity of glycolytically competent colorectal cancer (CRC) cells in vitro and in patient-derived CRC xenografts. While the increased glycolytic activity rapidly replenished the ATP pool, it did not restore the reduced production of aspartate upon OXPHOS inhibition.

View Article and Find Full Text PDF

Genomic and phenotypic correlates of mosaic loss of chromosome Y in blood.

Am J Hum Genet

January 2025

Division of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA. Electronic address:

Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole-genome sequencing (WGS) of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program.

View Article and Find Full Text PDF

Microproteins: emerging roles as antibiotics.

Trends Genet

January 2025

Machine Biology Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA. Electronic address:

Recent advances in computational prediction and experimental techniques have detected previously unknown microproteins, particularly in the human microbiome. These small proteins, produced by diverse microbial species, are emerging as promising candidates for new antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!