This work demonstrates the design and fabrication of an all cyclo-olefin polymer based microfluidic device capable of capturing magnetic beads and performing electrochemical detection in a series of gold electrodes. The size of chip is of a microscope slide and features six independent measuring cells for multianalyte detection purposes. The aim of this work is to show that rapid prototyping techniques can be instrumental in the development of novel bioassays, particularly in clinical diagnosis applications. We show the successful determination of troponin-T, a cardiac disease marker, in the clinically relevant range of 0.05-1.0 ng/mL. This methodology achieves a detection limit of 0.017 ng/mL in PBS solutions, and is capable of detecting less than 1 ng/mL in a 1:50 human serum dilution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.201200225 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!