Deletion of the Ikaros (IKZF1) gene is an oncogenic lesion frequently associated with BCR-ABL1-positive acute lymphoblastic leukemias. It is also found in a fraction of BCR-ABL1-negative B-cell precursor acute lymphoblastic leukemias, and early studies showed it was associated with a higher risk of relapse. Therefore, screening tools are needed for evaluation in treatment protocols and possible inclusion in risk stratification. Besides monosomy 7 and large 7p abnormalities encompassing IKZF1, most IKZF1 alterations are short, intragenic deletions. Based on cohorts of patients, we mapped the microdeletion breakpoints and developed a breakpoint-specific fluorescent multiplex polymerase chain reaction that allows detection of recurrent intragenic deletions. This sensitive test could also detect IKZF1 subclonal deletions, whose prognostic significance should be evaluated. Moreover, we show that consensus breakpoint sequences can be used as clonal markers to monitor minimal residual disease. This paper could be useful for translational studies and in clinical management of BCP-ALL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659991PMC
http://dx.doi.org/10.3324/haematol.2012.073965DOI Listing

Publication Analysis

Top Keywords

intragenic deletions
12
acute lymphoblastic
12
multiplex polymerase
8
polymerase chain
8
chain reaction
8
reaction allows
8
allows detection
8
minimal residual
8
residual disease
8
b-cell precursor
8

Similar Publications

Hypertrophic cardiomyopathy (HCM) is rare in childhood, but it is associated with significant morbidity and mortality. Genetic causes of HCM are mostly related to sarcomeric genes abnormalities; however, syndromic, metabolic, and mitochondrial disorders play an important role in its etiopathogenesis in pediatric patients. We here describe a new case of apparently isolated HCM due to mitochondrial assembly factor gene NDUFAF1 biallelic variants (c.

View Article and Find Full Text PDF

Introduction: Structural variants (SVs) of the nebulin gene (), including intragenic duplications, deletions, and copy number variation of the triplicate region, are an established cause of recessively inherited nemaline myopathies and related neuromuscular disorders. Large deletions have been shown to cause dominantly inherited distal myopathies. Here we provide an overview of 35 families with muscle disorders caused by such SVs in .

View Article and Find Full Text PDF

Novel Intragenic and Genomic Variants Highlight the Phenotypic Variability in -Related Disease.

Genes (Basel)

December 2024

Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.

: Disruption of results in microphthalmia with linear skin lesions (MLS) characterized by microphthalmia/anophthalmia, corneal opacity, aplastic skin lesions, variable central nervous system and cardiac anomalies, intellectual disability, and poor growth in heterozygous females. Structural variants consisting of chromosomal rearrangements or deletions are the most common variant type, but a small number of intragenic variants have been reported. : Exome sequencing identified variants affecting .

View Article and Find Full Text PDF

Background: Genetic testing has traditionally been divided into molecular genetics and cytogenetics, originally driven by the use of different assays and their associated limitations. Cytogenetic technologies such as karyotyping, fluorescent in situ hybridization or chromosomal microarrays are used to detect large "megabase level" copy number variants and other structural variants such as inversions or translocations. In contrast, molecular methodologies are heavily biased toward subgenic "small variants" such as single nucleotide variants, insertions/deletions, and targeted detection of intragenic, exon level deletions or duplications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!