Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The prehensile hand is one of the major traits distinguishing primates from other mammal species. All primates, in fact, are able to grasp an object and hold it in part or entirely using a single hand. Although there is a wealth of behavioral data regarding grasping movements in humans and apes, there is relatively little material on macaques, the animal model often used to investigate neuronal mechanisms responsible for grip control in humans. To date, evidence regarding free-ranging macaques is confined to observational data, while quantitative reports describe studies carried out in laboratory settings or in captivity. The purpose of the present study was to provide the first kinematic descriptions of basic grip behavior with regard to precision and power grips in free-ranging macaque monkeys. Video footage of those animals grasping objects was analyzed frame-by-frame using digitalization techniques. The results revealed that the two types of grips considered are each characterized by specific kinematic signatures. It was also found that hand kinematics was scaled depending on the type of grasp needing to be adopted and the intrinsic properties of the object to be grasped. In accordance with data concerning humans, these findings indicate that the intrinsic features of an object affect the planning and control of reach-to-grasp movements even in free-ranging macaques. The data presented here take research in the field of comparative reach-to-grasp kinematics in human and non-human primates another step forward as they are based on precise measurements of spontaneous grasping movements by animals living/acting in their natural environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-012-3294-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!