In this study, we investigated during 400 days the microbial community variations as observed from 16S DNA gene DGGE banding patterns from an aerobic granular sludge pilot plant as well as the from a full-scale activated sludge treatment plant in Epe, the Netherlands. Both plants obtained the same wastewater and had the same relative hydraulic variations and run stable over time. For the total bacterial population, a similarity analysis was conducted showing that the community composition of both sludge types was very dissimilar. Despite this difference, general bacterial population of both systems had on average comparable species richness, entropy, and evenness, suggesting that different bacteria were sharing the same functionality. Moreover, multi-dimensional scaling analysis revealed that the microbial populations of the flocculent sludge system moved closely around the initial population, whereas the bacterial population in the aerobic granular sludge moved away from its initial population representing a permanent change. In addition, the ammonium-oxidizing community of both sludge systems was studied in detail showing more unevenness than the general bacterial community. Nitrosomonas was the dominant AOB in flocculent sludge, whereas in granular sludge, Nitrosomonas and Nitrosospira were present in equal amounts. A correlation analysis of process data and microbial data from DGGE gels showed that the microbial diversity shift in ammonium-oxidizing bacteria clearly correlated with fluctuations in temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-012-4472-7DOI Listing

Publication Analysis

Top Keywords

granular sludge
16
aerobic granular
12
bacterial population
12
sludge
10
microbial diversity
8
activated sludge
8
general bacterial
8
flocculent sludge
8
initial population
8
microbial
5

Similar Publications

Ammonia-oxidizing bacteria (AOB) sourced from an aerobic granular sludge (AGS) process were rapidly enriched by progressively increasing ammonia nitrogen (NH-N) loads, achieving a Nitrosomonas abundance of 20.7 % and a nitrite accumulation rate exceeding 80 %. Mycelial pellets formed by Cladosporium, isolated from the same AGS system, provided a porous surface structure for the immobilization of the enriched AOB, creating mycelial pellet/AOB composites.

View Article and Find Full Text PDF

Aerobic granular sludge (AGS) is usually considered to be a biofilm system consisting of granules only, although practical experience suggests that flocs and granules of various sizes co-exist. This study thus focused on understanding the contribution of flocs and granules of various sizes to nitrification in a full-scale AGS-based wastewater treatment plant (WWTP) operated as a sequencing batch reactor (SBR). The size distribution in terms of total suspended solids (TSS) and the distribution of the nitrifying communities and activities were monitored over 14 months.

View Article and Find Full Text PDF

Deciphering intricate associations between vigorous development and novel metabolic preferences of partial denitrification/anammox granular consortia within mainstream municipal wastewater.

Bioresour Technol

January 2025

National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China. Electronic address:

There is limited understanding of the granular partial denitrification/anammox (PD/A) microbiota and metabolic hierarchy specific to municipal wastewater treatment, particularly concerning the multi-mechanisms of functional differentiation and granulation tendencies under high-loading shocks. Therefore, this study utilized fragmented mature biofilm as the exclusive inoculum to rapidly establish a granular PD/A system. Following long-term feeding with municipal wastewater, PD/A process reached a total nitrogen removal efficiency of 97.

View Article and Find Full Text PDF

Simultaneous nitrogen removal and phosphorus recovery in granular sludge-based partial denitrification/anammox-hydroxyapatite precipitation (PD/A-HAP) process under low C/N ratio and dissolved oxygen limitation.

Bioresour Technol

January 2025

School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou International Cooperation Base for Science and Technology on Carbon Neutrality of Organic Solid Waste Conversion, Zhengzhou 450001, PR China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China.

This study integrates partial denitrification/Anammox (PD/A) with hydroxyapatite (HAP) crystallization in a single reactor, achieving simultaneous nitrogen and phosphorus removal along with phosphorus recovery. By adjusting pH, sludge concentration, low COD/TN ratio, and applying moderate dissolved oxygen stress, the system operated stably and promoted the synergistic growth of HAP and biomass. Results showed a nitrogen removal efficiency (NRE) of 94.

View Article and Find Full Text PDF

Iron-loaded diatomite (Fe-DE) was developed as the innovative material to enhance anammox granular sludge (AnGS) and mainstream anammox performance. By adding Fe-DE with the Fe:DE ratio of 1:20 and the dosage of 3 g/L, the start-up period of mainstream anammox process was shortened from 29 d to 17 d and its nitrogen removal rate was increased from 0.234 kg N/(m·d) to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!