With the advent of advanced tools in molecular biology, understanding on cancer etiology has improved. siRNA can be considered as an effective tool in cancer therapy through silencing overexpressed genes responsible for cell proliferation or preventing apoptosis. However, some contentious issues such as stability and delivery of siRNA are to be resolved. Bcl-2, an anti-apoptotic gene, is overexpressed in a wide variety of cancers and responsible for drug resistance tumors. In our earlier studies, we developed a nanoformulation of siRNA targeting the Bcl-2 and achieved successful delivery in vitro and in vivo. To extend the scope of the study further, in the present work, we studied the role of nanoformulation of siRNA as adjuvant in chemotherapy with cisplatin. Dose dependant nephrotoxicity is a serious concern apart from other adverse effects of cisplatin. The IC(50) value for cisplatin was decreased from 9.83 μmol/l to 7.43 μmol/l in HeLa cells and from 8.54 μmol/l to 6.68 μmol/l in HEp-2 cells, when it was given with siRNA nanoformulation. Cisplatin at the dose of 1.7 mg/kg in combination with siRNA nanoformulation was effective in improving the lifespan of tumor bearing mice with significant decrease in nephrotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexmp.2012.10.007 | DOI Listing |
Life (Basel)
January 2025
Laboratory of Toxicology and Risk Assessment, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, 20133 Milan, Italy.
Nucleic acid (NA)-based drugs are promising therapeutics agents. Beyond efficacy, addressing safety concerns-particularly those specific to this class of drugs-is crucial. Here, we propose an in vitro approach to screen for potential adverse off-target effects of NA-based drugs.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Research Institute for Prevention of Non-Communicable Diseases, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran. Electronic address:
Integrin αvβ3, a primary cell-adhesion receptor, plays a crucial role in various biological processes, including angiogenesis, pathological neovascularization, and tumor metastasis. Its expression increases during tumor angiogenesis. The insulin-like growth factor 1 receptor (IGF1R) is a transmembrane protein that stimulates vital signaling pathways, promoting cancer cell growth, survival, and metabolism.
View Article and Find Full Text PDFBiomater Adv
March 2025
Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India. Electronic address:
Rheumatoid arthritis (RA), characterized as a systemic autoimmune ailment, predominantly results in substantial joint and tissue damage, affecting millions of individuals globally. Modern treatment modalities are being explored as the traditional RA therapy with non-specific immunosuppressive drugs showcased potential side effects and variable responses. Research potential with small interfering RNA (siRNA) depicted potential in the treatment of RA.
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India. Electronic address:
Small interfering RNA (siRNA) holds promise as a therapeutic approach for various diseases, yet challenges persist in achieving efficient delivery, biodistribution, and minimizing off-target effects. Lipidic nanoformulations are being developed to address these hurdles, but the optimal dose for preclinical investigations remains unclear. This systematic review and meta-analysis aims to determine the optimal dose of nanoformulated siRNA and explore factors influencing dose and biodistribution, informing future research in this field.
View Article and Find Full Text PDFNat Commun
June 2024
Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), The Personalized Medicine Research Institute (PRECISION), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
Ionotropic gelation is widely used to fabricate targeting nanoparticles (NPs) with polysaccharides, leveraging their recognition by specific lectins. Despite the fabrication scheme simply involves self-assembly of differently charged components in a straightforward manner, the identification of a potent combinatory formulation is usually limited by structural diversity in compound collections and trivial screen process, imposing crucial challenges for efficient formulation design and optimization. Herein, we report a diversity-oriented combinatory formulation screen scheme to identify potent gene delivery cargo in the context of precision cardiac therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!