The impact of variation within genes responsible for the disposition and metabolism of calcineurin inhibitors (CNIs) on clinical outcomes in kidney transplantation is not well understood. Furthermore, the potential influence of donor, rather than recipient, genotypes on clinical endpoints is unknown. Here, we investigated the associations between donor and recipient gene variants with outcome among 4471 white, CNI-treated kidney transplant recipients. We tested for 52 single-nucleotide polymorphisms (SNPs) across five genes: CYP3A4, CYP3A5, ABCB1 (MDR1; encoding P-glycoprotein), NR1I2 (encoding the pregnane X receptor), and PPIA (encoding cyclophilin). In a discovery cohort of 811 patients from Birmingham, United Kingdom, kidney donor CC genotype at C3435T (rs1045642) within ABCB1, a variant known to alter protein expression, was associated with an increased risk for long-term graft failure compared with non-CC genotype (hazard ratio [HR], 1.69; 95% confidence interval [CI], 1.20-2.40; P=0.003). No other donor or recipient SNPs were associated with graft survival or mortality. We validated this association in 675 donors from Belfast, United Kingdom (HR, 1.68; 95% CI, 1.21-2.32; P=0.002), and in 2985 donors from the Collaborative Transplant Study (HR, 1.84; 95% CI, 1.08-3.13; P=0.006). In conclusion, these data suggest that an ABCB1 variant known to alter protein expression represents an attractive candidate for future study and risk stratification in kidney transplantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482733PMC
http://dx.doi.org/10.1681/ASN.2012030260DOI Listing

Publication Analysis

Top Keywords

abcb1 variant
12
donor recipient
12
increased risk
8
kidney transplantation
8
united kingdom
8
variant alter
8
alter protein
8
protein expression
8
donor
5
kidney
5

Similar Publications

Background: Methotrexate is an important component of curative therapy in childhood acute lymphoblastic leukemia (ALL), but the role of genetic variation influencing methotrexate clearance and transport in toxicity susceptibility in children with ALL is not well established. Therefore, we evaluated the association between suspected methotrexate pharmacogenomic variants and methotrexate-related neurotoxicity.

Methods: This study included children (aged 2-20 years) diagnosed with ALL (2005-2019) at six treatment centers in the southwest United States.

View Article and Find Full Text PDF

Computational Analysis of MDR1 Variants Predicts Effect on Cancer Cells via their Effect on mRNA Folding.

PLoS Comput Biol

December 2024

Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, Israel.

The P-glycoprotein efflux pump, encoded by the MDR1 gene, is an ATP-driven transporter capable of expelling a diverse array of compounds from cells. Overexpression of this protein is implicated in the multi-drug resistant phenotype observed in various cancers. Numerous studies have attempted to decipher the impact of genetic variants within MDR1 on P-glycoprotein expression, functional activity, and clinical outcomes in cancer patients.

View Article and Find Full Text PDF

Background: Microbiota-derived toxins indoxyl sulfate and hippuric acid were previously reported to be associated with altered pharmacokinetics of the immunosuppressant tacrolimus in liver transplant recipients, and ABC transporter proteins are likely to be involved in the transport of such substances, but the role has not been elucidated. The aim of this study was to assess the retention of indoxyl sulfate and hippuric acid in the plasma of liver transplantation subjects carrying different genotypes of and (changes in transporter activity due to genetic variation), and to explore whether genetic variation is involved in altering the relationship between microbe-derived toxins and tacrolimus pharmacokinetics.

Methods: Liver transplantation subjects treated with the immunosuppressive regimen tacrolimus, corticosteroids, and mycophyolate mofetil were included and divided into normal renal function group and chronic kidney disease group.

View Article and Find Full Text PDF

Genetic variation on dolutegravir pharmacokinetics and relation to safety and efficacy outcomes: a systematic review.

Pharmacogenomics

December 2024

Department of Pharmacy, Radboudumc Research Institute for medical Innovation (RIMI), Radboud University Medical Center, Nijmegen, The Netherlands.

Background: Dolutegravir (DTG) is an antiviral agent used for the treatment of HIV, however, there is uncertainty over the influence of genetic variation on DTG exposure, and whether it has clinical implications for the efficacy or toxicity in different populations. This systematic review aims to create an overview of the impact of pharmacogenomics (PGx) on DTG exposure, efficacy, and toxicity.

Methods: Publications up to 14 November 2023 were searched and articles were selected on the following criteria: original research articles providing data on people with HIV, data on PGx and either PK or PD or both PD and PGx.

View Article and Find Full Text PDF

Aims: Paclitaxel and nanoparticle albumin-bound (nab)-paclitaxel can cause early, extremely severe neutropenia, occasionally leading to fatal outcomes. As paclitaxel is a substrate of P-glycoprotein, this study aimed to investigate the impact of ABCB1 single-nucleotide variants, which encode P-glycoprotein, on early, extremely severe neutropenia in patients receiving paclitaxel/nab-paclitaxel plus ramucirumab as second-line therapy for unresectable advanced/recurrent gastric cancer.

Methods: We analysed patients treated at Aichi Cancer Center Hospital from January 2018 to August 2023, with DNA samples stored in the Cancer BioBank Aichi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!