Spinal muscular atrophy (SMA) is a motor neuron disease caused by deficiency of the ubiquitous survival motor neuron (SMN) protein. To define the mechanisms of selective neuronal dysfunction in SMA, we investigated the role of SMN-dependent U12 splicing events in the regulation of motor circuit activity. We show that SMN deficiency perturbs splicing and decreases the expression of a subset of U12 intron-containing genes in mammalian cells and Drosophila larvae. Analysis of these SMN target genes identifies Stasimon as a protein required for motor circuit function. Restoration of Stasimon expression in the motor circuit corrects defects in neuromuscular junction transmission and muscle growth in Drosophila SMN mutants and aberrant motor neuron development in SMN-deficient zebrafish. These findings directly link defective splicing of critical neuronal genes induced by SMN deficiency to motor circuit dysfunction, establishing a molecular framework for the selective pathology of SMA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474596PMC
http://dx.doi.org/10.1016/j.cell.2012.09.012DOI Listing

Publication Analysis

Top Keywords

motor circuit
20
motor neuron
12
smn-dependent u12
8
u12 splicing
8
motor
8
circuit function
8
smn deficiency
8
circuit
5
smn
5
splicing
4

Similar Publications

Hippocampus in the mammalian brain supports navigation by building a cognitive map of the environment. However, only a few studies have investigated cognitive maps in large-scale arenas. To reveal the computational mechanisms underlying the formation of cognitive maps in large-scale environments, we propose a neural network model of the entorhinal-hippocampal neural circuit that integrates both spatial and non-spatial information.

View Article and Find Full Text PDF

QOMIC: quantum optimization for motif identification.

Bioinform Adv

December 2024

Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, United States.

Motivation: Network motif identification (MI) problem aims to find topological patterns in biological networks. Identifying disjoint motifs is a computationally challenging problem using classical computers. Quantum computers enable solving high complexity problems which do not scale using classical computers.

View Article and Find Full Text PDF

The cerebellum is involved in non-motor processing, supported by topographically distinct cerebellar activations and closed-loop circuits between the cerebellum and the cortex. Disruptions to cerebellar function may negatively impact prefrontal function and processing. Cerebellar resources may be important for offloading cortical processing, providing crucial scaffolding for normative performance and function.

View Article and Find Full Text PDF

Genetic advances and translational phenotypes in rodent models for Tourette disorder.

Curr Opin Neurobiol

January 2025

Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA. Electronic address:

Tourette disorder (TD) is a neurodevelopmental condition affecting approximately 0.3%-1% of children and adolescents. It is defined by motor and vocal tics but encompasses wide ranging phenotypes due to its complex genetic origins, involving hundreds of risk genes across various signaling pathways.

View Article and Find Full Text PDF

Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!