QSPR prediction of retention times of phenylurea herbicides by biological plastic evolution.

Curr Drug Saf

Institut Universitari de Ciència Molecular, Universitat de València, Edifici d'Instituts de Paterna, P. O. Box 22085, E-46071 València, Spain.

Published: September 2012

A simple/sensitive high-performance liquid chromatographic method, with ultraviolet (UV) detection, was developed for phenylurea-herbicide analysis, which involves preconcentration using solid-phase extraction. Mobile phase was acetonitrile/water at flow-rate of 1 mL.min-1 with direct UV absorbance detection at 210 nm. Analyte separation studied on a C18 column was applied successfully to herbicide analysis in soft drink's brands and tap water. Good linearity/repeatability was observed for all pesticides. Retention times increase as: metoxuron < monuron < diuron < matazachlor < linuron. They are modelled by structure-property relations. The effect of different types of features is analyzed: electronic, solvation, lipophilic and steric, etc. Formation enthalpy and molecular dipole moment are calculated with MOPAC-AM1. Most important properties are hydration free energy and dipole moment. Results are improved if competitive conformation with higher dipole moment is considered at 1.1kJ.mol-1. Plastic evolution is an evolutionary perspective conjugating the effect of acquired characters, and relations that emerge among the principles of evolutionary indeterminacy, morphologic determination and natural selection. Plastic evolution is applied to design co-ordination index Ic, which is used to characterize phenylurea herbicides and compared to molecular dipole moment for retention time. Parametres needed to calculate Ic are formation enthalpy and molecular weight/surface area. Ic improves multivariable regression equations for retention and is predictive when it is used together with dipole and hydration free energy. Correction introduced in retention is produced in the correct direction. Hierarchical quantitative structure-property relationship provided simplified properties analysis. Structural classification is based on the presence of two Cl/O/N atoms.

Download full-text PDF

Source
http://dx.doi.org/10.2174/157488612804096551DOI Listing

Publication Analysis

Top Keywords

dipole moment
16
plastic evolution
12
retention times
8
phenylurea herbicides
8
formation enthalpy
8
enthalpy molecular
8
molecular dipole
8
hydration free
8
free energy
8
retention
5

Similar Publications

Solvatochromic charge model of isonitrile probes for investigating hydrogen-bond dynamics with 2DIR spectroscopy.

J Chem Phys

January 2025

Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden.

Isonitrile-derivatized amino acids are emerging as highly effective infrared (IR) probes for investigating the structures and dynamics of hydrogen (H)-bonds. These probes enable the quantification of chemical exchange processes in solute-solvent complexes via two-dimensional IR spectroscopy and hold significant promise for site-specific dynamic studies within proteins. Despite their potential, theoretical models that elucidate the solvatochromism of isonitriles remain underdeveloped.

View Article and Find Full Text PDF

A hybrid B3LYP version of the Density Functional Theory was applied in full geometry optimization followed by vibrational analysis of mustard-type molecules acting as antiblood cancer agents: melphalan and bendamustine. All calculations were performed with water as a solvent. In addition to the ground-state properties (dipole moment, quadrupole moment, dipole polarizability, solvated surface and volume, zero-point vibration energy, total entropic term), properties that characterize adiabatic redox processes (ionization energy, electron affinity, molecular electronegativity, chemical hardness, electrophilicity index) together with the absolute oxidation and reduction potentials were evaluated.

View Article and Find Full Text PDF

Organic-inorganic formamidinium lead triiodide (FAPbI) hybrid perovskite quantum dots (QDs) have garnered considerable attention in the photovoltaic field due to their narrow bandgap, exceptional environmental stability, and prolonged carrier lifetime. Unfortunately, their insulating ligands and surface vacancy defects pose significant obstacles to efficient charge transfer across device interfaces. In this work, an electrostatic harmonization strategy at the interface using a donor-acceptor dipole molecular attachment to achieve enhanced charge separation capabilities on the QD surface is ventured.

View Article and Find Full Text PDF

Aim: There is an urgent need for new antimicrobial compounds with alternative modes of action for the treatment of drug-resistant bacterial and fungal pathogens.

Background: Carbohydrates and their derivatives are essential for biochemical and medicinal research because of their efficacy in the synthesis of biologically active drugs.

Objective: In the present study, a series of methyl α-D-mannopyranoside (MMP) derivatives (2-6) were prepared via direct acylation, and their biological properties were characterized.

View Article and Find Full Text PDF

The alignment of permanent dipole moments and the resulting spontaneous orientation polarization (SOP) are commonly observed in evaporated neat films of polar organic molecules and lead to a so-called giant surface potential. In the case of mixed films, often enhanced molecular orientation is observed, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!